首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铜铁矿区周边地下水硫酸盐污染是生态环境研究关注的热点问题,精确识别硫酸盐来源及迁移途径对于矿区周边地下水污染防控和供水安全至关重要.利用水化学与硫同位素耦合分析,结合矿区水文地质条件和潜在污染源分布,探讨了区内地下水硫酸盐污染特征、来源及迁移途径.区域内地下水包括松散岩类孔隙水、碳酸盐岩裂隙岩溶水及岩浆岩风化裂隙水,水化学类型主要为HCO3·SO4-Ca型,水化学组分主要来源于硅酸岩、碳酸盐岩和硫酸盐矿物的溶解以及硫化物氧化;地下水中SO42-含量范围为44.4~2 089.0 mg/L,高值区主要分布在洪山溪尾矿库、矿渣堆存处及矿业生产区附近;地下水中δ34S-SO42-在2.6‰~31.5‰之间,反映其SO42-具有多源性.地下水中SO42-的主要来源包括含水层中石膏矿物的溶解和黄铁矿等含硫矿物氧化输入,高含量的SO4  相似文献   

2.
结合稳定同位素( D、18O、13C) ,应用聚类分析和因子分析两种多元统计分析方法,对鄂尔多斯沙漠高原白垩系含水层地下水水化学演化特征进行研究。结果表明: 研究区环河组和洛河组地下水均可分为3 大类,且大致在地下水补给区、径流区和排泄区分别聚类,每一类的水化学特征和同位素特征均存在一定的差异; 研究区地下水均起源于大气降水,发生了岩盐溶滤、碳酸盐矿物溶解、硫酸盐矿物溶解、硅酸盐矿物溶解和阳离子交换等水文地球化学作用。相对洛河组地下水,环河组地下水水化学演化特征还受到了大气降水稀释作用和酸碱演化的影响。  相似文献   

3.
本文通过对延河泉域内污染现状的评价,详细分析其地质、水文地质和水文地球化学分带特征,运用热力学方法计算,确定了碳酸盐岩、硫酸盐岩矿物溶沉方向的饱和指数。以此划分了岩溶地下水的环境保护区,并提出了保护措施。  相似文献   

4.
为了解喀斯特地区水-岩相互作用特征和辨别地下水污染物的来源,为揭示人类活动对喀斯特地下水文地球化学环境的影响,研究了贵州省贵阳市不同岩性含水层地下水和地表水的化学特征.结果发现,地表和地下水主要有HCO3型和SO4型以及这两种化学类型的混合型.地下水地表水化学溶解物质主要来源于碳酸盐岩和碎屑沉积岩的化学风化作用,硫酸盐矿物的溶解和硫化物氧化形成的硫酸对岩石矿物的化学风化是导致水体富集硫酸盐的主要因素.区内地表水和地下水的主要污染物质为K+、Na+、Cl-、SO42-和NO3-.这一研究成果为评价地表/地下水环境的质量现状,为喀斯特地区地表水地下水资源的保护和利用提供了科学依据.  相似文献   

5.
鄂尔多斯白垩系盆地地下水水-岩反应的锶同位素证据   总被引:3,自引:0,他引:3  
利用鄂尔多斯白垩系盆地地下水锶同位素和水化学资料,对该区水-岩作用机制进行了分析,并采用反向水文地球化学模拟的方法对锶同位素示踪水-岩反应的分析结论进行了验证。结果表明:研究区主要发生了石膏、少量碳酸盐矿物及铝硅酸盐矿物的溶解反应,且北区地下水对石膏等硫酸盐矿物的溶滤作用强于南区,而南区地下水对铝硅酸盐矿物的溶滤作用强于北区;同时,南区碳酸盐矿物发生了溶解/沉淀的不一致性,即白云石发生溶解反应而方解石发生沉淀反应。采用锶同位素方法得出的水-岩作用结论与反向水文地球化学模拟结果相一致。  相似文献   

6.
焦珣 《上海国土资源》2012,33(2):16-20,33
在对某石油污染场地地质、水文地质条件、污染源污染方式调查基础上,根据地下水样测试结果,分析了地下水石油烃污染分布特征、污染晕中指示生物降解作用的电子受体、代谢产物以及重要地球化学参数的变化规律,通过计算矿物饱和指数和采用含水层介质X射线矿物衍射方法研究了污染晕中矿物沉淀反应,计算了含水层的氧化容量。结果表明:由于SO42-背景浓度值较高,硫酸盐还原是污染场地地下水石油烃生物降解的优势反应;菱铁矿、黄铁矿和FeS的沉淀反应是HS-、Fe2+浓度异常的原因;SO42-的氧化容量在含水层中的氧化容量(OXC)所占比例最大,可进一步推断硫酸盐还原反应是引起污染场地地下水石油烃生物降解的优势反应。  相似文献   

7.
峨眉山东麓地区浅层地下水无机络合物研究   总被引:1,自引:0,他引:1  
本文通过对峨眉山东藏地区浅层地下水Ca^2+,Mg^2+硫酸盐、硫酸盐络合物的计算分析认为:地下水中络合物组分可反映地下水类型及成因,同时可帮助判断地下水的补、径、排条件;平原区络合物的分布表明,其地下水环境已形成了两类次水化学环境。  相似文献   

8.
经过野外现场调查和取样分析及室内研究得知南阳油田地下水已遭受不同程度的有机物污染,且污染范围可能进一步向油田南部扩散。根据近似地下水流线方向上地下水中总油质量浓度和Fe,Mn等无机组分的变化势态,结合含水介质化学分析结果,发现硫酸盐、Fe和Mn可作为地下水有机污染和地球化学标志物。在含水介质中Fe和Mn质量浓度较高的地方,地下水有机污染物降解速度快,含水介质中Fe和Mn的氧化物和氢氧化物的还原作用导致了含水层介质中Fe和Mn的缺乏和地下水中溶解Fe和Mn的积聚;在含水介质中Fe和Mn质量浓度低的地方,地下水中的有机物质量浓度并没有降低,相应地地下水中溶解Fe和Mn的质量浓度也很低。同时,由于有机污染物的存在使地下水中硫酸盐被还原,导致城下水中硫酸盐质量浓度偏低,且地下水中Fe对有机物污染的敏感性比Mn强。  相似文献   

9.
张廷胜 《地下水》2007,29(1):91-93
通过对延河泉域地质、水文地质和水文地球化学分带特征的分析,运用热力学方法计算,确定了碳酸盐岩、硫酸盐岩矿物溶沉方向的反应比率(饱和指数),以此划分了岩溶地下水的环境保护区,并提出了保护措施.  相似文献   

10.
微生物矿化成因的铁硫酸盐矿物表面特征初探   总被引:12,自引:1,他引:12  
研究表明,生物一矿物相互作用是地球表层系统演化的重要地质营力之一。微生物与矿物岩石之间进行着活跃的物质交换,微生物通过营造微观地球化学环境和提供吸附、成核中心影响着矿物的溶解和结晶,其中生物一矿物界面是物质交换和化学反应最为活跃的场所,矿物表界面记录着丰富的微生物作用信息。在综述前人微生物一矿物相互作用界面研究的基础上,利用气体吸附技术,对比分析了微生物矿化成因和无机合成含水铁硫酸盐矿物的表面积、表面分形和表面吸附能特征,初步讨论了微生物矿化成因铁硫酸盐矿物的表面特征和控制机理。  相似文献   

11.
运用微观分析方法,在鄂尔多斯盆地白垩系钻孔岩样中首次发现方沸石类矿物,并对方沸石岩进行了提纯和改性,用于当地硫酸盐水的处理,取得了明显的效果。对于100 mL起始浓度为1000 mg/L的硫酸盐溶液,改性方沸石岩较佳的水处理工艺条件为:用量2.0 g,搅拌时间60 min,粒度小于100目。改性方沸石岩对起始浓度为1000 mg/L的硫酸盐溶液,一次水处理后硫酸盐含量就低于国家标准。对于起始浓度高于1000 mg/L的硫酸盐溶液,几次水处理后硫酸盐含量也能低于国家标准。这为鄂尔多斯盆地劣质地下水的改良开辟了一条新途径。  相似文献   

12.
对地热水水化学特征及其形成机理进行研究可以为地热资源开发与保护提供水文地球化学依据.目前缺乏对济北地热田水化学形成机理的研究,限制了该地热田的开发.通过对南部岩溶冷水、地热田地热水采样,并综合运用Pipper三线图、相关性分析、离子比值法、矿物饱和指数法及反向地球化学模拟等手段,对该地热田地热水水化学形成机理展开研究.结果表明,由南向北,地下水中TDS含量及主要离子含量均有一定的上升趋势,地下水水化学类型由HCO_3-Ca型向HCO_3-Ca·Mg、SO_4-Ca、SO_4-Ca·Na型转化,表现出明显的分带特征;碳酸盐矿物、硫酸盐矿物、岩盐矿物的溶解—沉淀是控制本区地下水水化学特征的重要过程,同时伴随着钠长石、钾长石等硅酸盐矿物的溶解,南部冷水受到了人类活动的影响.  相似文献   

13.
铁氧化物对硫酸盐还原菌分解硫酸盐矿物的协同作用   总被引:5,自引:0,他引:5  
以牛肉膏为碳源,用活性污泥混合菌接种,探讨在缺氧条件下添加不同的铁氧化物对硫酸盐还原菌(SRB)分解硫酸盐矿物的影响。通过溶液pH、铁离子、硫酸根浓度以及固体产物的SEM和EDS图谱分析,揭示硫酸盐矿物分解过程和机制。实验结果表明,铁氧化物对SRB分解硫酸盐矿物起着明显的协同作用:①被铁还原菌还原的Fe2+与硫酸盐还原产生的硫化氢反应形成铁硫化物,消除硫化氢对SRB分解硫酸盐的抑制作用;②铁氧化物还原溶解,提高体系的pH和碱度,增加生化产物CO2的溶解,诱导溶解的钙离子形成方解石沉淀,促进SRB分解硫酸盐矿物的过程。  相似文献   

14.
碳还原法分析硫酸盐的氧同位素组成   总被引:1,自引:0,他引:1  
万德芳  李延河  秦燕 《矿床地质》2011,30(4):749-753
硫酸盐矿物是自然界最常见矿物,也是自然界少数具有氧同位素非质量分馏效应的矿物之一.硫酸盐矿物的氧同位素组成可以为研究其形成过程和生成条件提供大量信息.目前,在国内外分析硫酸盐氧同位素的3种方法中,碳还原方法乃是分析硫酸盐中氧同位素组成的最精准方法.本次研究建立了分析硫酸盐中氧同位素组成的碳还原方法,介绍了硫酸钡的分析流...  相似文献   

15.
郭海棠 《地质与勘探》2014,50(3):486-493
穆斯堡尔谱对确定铁离子占位、核外环境及氧化态方面有着独特的优势。在红山铜金矿床氧化带硫酸盐矿物的XRD、TA、湿法化学分析和红外光谱测试的基础上,测定了板铁矾、针绿矾等8种硫酸盐矿物的室温57Fe穆斯堡尔谱,并根据常温下硫酸盐矿物穆斯堡尔谱参数和其晶体结构中Fe3+和Fe2+的占据位置对其谱峰进行了指派。结果表明本矿床氧化带硫酸盐矿物的穆斯堡尔谱的同质异能位移较小、四级矩分裂值分布范围较大、无磁超精细分裂等特征,且硫酸盐矿物结构中存在着共价键。通过与青海锡铁山铅锌矿氧化带硫酸盐矿物的穆斯堡尔谱相比较,两者在近地表风化及氧化过程中所处的物理化学条件基本相同,酸性和氧化性的环境为硫酸盐矿物的产生和保存提供了良好条件,但红山矿床更为干旱少雨,导致两者硫酸盐的穆斯堡尔谱参数略有不同。  相似文献   

16.
酸性矿山废水对合山地下水污染的硫氧同位素示踪   总被引:5,自引:1,他引:4       下载免费PDF全文
以广西合山煤矿为例,应用硫酸盐硫、氧同位素示踪并量化酸性矿山废水对矿区地下水的污染。合山矿井水表现出高浓度SO2-4和低p H值的酸性矿山废水特征,其硫酸盐硫、氧同位素组成显著富集轻同位素,表明煤矸石中黄铁矿的氧化是其产生的主要机制,反应途径为微生物作用下Fe3+对Fe S2的氧化。利用硫酸盐硫、氧同位素组成并应用三元混合模型计算,结果表明矿区地下水基本都受到酸性矿山废水的入渗影响,其对地下水硫酸盐的贡献比例为16%~52%。硫酸盐硫、氧同位素能够示踪酸性矿山废水对地下水的影响,是示踪与评价矿山开采活动对地下水污染的有效手段。  相似文献   

17.
为查明大同盆地高砷地下水的分布规律及其主要控制因素,对大同盆地典型高砷区35件地下水样进行了水化学特征及形态分析研究。结果表明,高砷地下水[ρ(As)≥50μg/L]主要存在于20~50 m的浅层地下水中,总砷质量浓度为0.56~927μg/L,主要以As(Ⅴ)形态存在。该区高砷地下水以Na-HCO3型水为主,具有明显的高pH值,高HCO-3、Fe2+、HS-质量浓度及低Eh值,低SO2-4质量浓度特征。这可能与微生物催化氧化有机碳的同时还原含铁矿物和硫酸盐的过程有关。PHREEQC模拟矿物饱和指数结果表明,高砷地下水[ρ(As)≥50μg/L]中菱铁矿均为过饱和,而低砷地下水[ρ(As)50μg/L]中均不饱和,且菱铁矿饱和指数与地下水中总砷质量浓度呈显著正相关性,该现象表明微生物还原含铁矿物生成FeCO3(菱铁矿)的过程可能是控制本区地下水中砷富集的主要因素。  相似文献   

18.
稳定同位素因其指纹效应已成为分析矿区污染来源的重要技术手段。文章以招远金矿区为例,应用硫同位素联合水化学分析、聚类分析及氢氧同位素分析招远金矿区水污染特征和成因。通过分析可知,矿区内地表水和地下水主要接受大气降水补给,水力联系密切。水化学类型以SO4—Ca和SO4—Na型为主,阴离子以SO42-为主,地表水和地下水的NO3-和Cl-在空间上变异性较大。地表水硫酸盐含量普遍偏高,硫酸盐污染较为严重,高值区出现在玲珑金矿、金翅岭金矿和张星镇附近;而地下水高值区都出现在玲珑金矿附近,且SO42-浓度沿着径流方向逐渐降低。地表水中硫酸盐δ34S值介于1.8‰~9.8‰,地下水中硫酸盐δ34S值介于2.7‰~9.6‰,地表水和地下水硫酸盐含量受玲珑金矿硫化、玲珑花岗岩和胶东岩群影响明显。在地下水径流途中,有地表水入渗污染地下水的现象。另外,工业废水的排放也是硫酸盐含量升高的主要原因。研究表明:硫同位素在金矿区硫酸盐污染的来源和特征方面有很好的指示作用,是评价矿山开采对地下水污染的有效工具。  相似文献   

19.
成都市白垩系灌口组近地表红层富膏盐地层因富含膏盐、钙芒硝等易溶矿物普遍发育红层类岩溶现象,制约着地下空间的开发利用。为梳理出成都市域灌口组富膏盐红层溶蚀规律与机理,防范红层硫酸盐岩溶相关的工程地质问题,综合利用钻孔岩芯、物探、测井、物性测试、溶解实验等资料,分析区域内富膏盐地层的分布规律、富膏盐红层溶蚀特征、溶蚀发育的影响因素和红层硫酸盐岩溶机理。综合研究表明,成都市白垩系灌口组富膏盐红层溶蚀现象普遍发育于低丘台地区及平原河谷区。红层硫酸盐岩溶受地形、构造、地下水活动、断裂等多种因素的综合影响,地下水活动和断裂系统是最关键因素。存在两种不同的溶蚀模式:在高于平原区的低丘地区,地表水透过第四系松散卵砾石层,入渗至裂缝发育、岩体破碎的强-中风化以及富含膏盐的白垩系灌口地层,溶蚀钙芒硝、石膏、硬石膏等矿物后,地下水顺流至低洼的平原、河谷地带或汇入地表径流,促使溶蚀作用的持续发生;在低于平原区的较深部,地表径流沿向斜翼部侧向顺层流动或沿断裂系统入渗补给地下水,导致60 m以深的较深部发生溶蚀现象。  相似文献   

20.
本文采用反应途径模拟技术,以洛阳市为例,研究了受硫酸盐污染的地下水水质变化过程.结果表明;由于石膏、方解石、白云石溶解度的限制,富含碳酸盐地区的地下水受硫酸盐污染时,随着污染程度的加重,主要离子的平衡浓度将达到稳定值,平衡浓度稳定值的高低与Pco2有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号