首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Assessment of forecast precipitation is required before it can be used as input to hydrological models. Using radar observations in southeastern Australia, forecast rainfall from the Australian Community Climate Earth-System Simulator (ACCESS) was evaluated for 2010 and 2011. Radar rain intensities were first calibrated to gauge rainfall data from four research rainfall stations at hourly time steps. It is shown that the Australian ACCESS model (ACCESS-A) overestimated rainfall in low precipitation areas and underestimated elevated accumulations in high rainfall areas. The forecast errors were found to be dependent on the rainfall magnitude. Since the cumulative rainfall observations varied across the area and through the year, the relative error (RE) in the forecasts varied considerably with space and time, such that there was no consistent bias across the study area. Moreover, further analysis indicated that both location and magnitude errors were the main sources of forecast uncertainties on hourly accumulations, while magnitude was the dominant error on the daily time scale. Consequently, the precipitation output from ACCESS-A may not be useful for direct application in hydrological modelling, and pre-processing approaches such as bias correction or exceedance probability correction will likely be necessary for application of the numerical weather prediction (NWP) outputs.
EDITOR M.C. Acreman ASSOCIATE EDITOR A. Viglione  相似文献   

2.
ABSTRACT

Spatial variability of rainfall has been recognised as an important factor controlling the hydrological response of catchments. However, gauged daily rainfall data are often available at scattered locations over the catchments. This paper looks into how to capitalise on the spatial structure of radar rainfall data for improving kriging interpolation of limited gauge data over catchments at the 1-km2 grid scale, using for the case study 117 gauged stations within the 128 km × 128 km region of the Mt Stapylton weather radar field (near Brisbane, Australia). Correlograms were developed using a Fast Fourier Transform method on the Gaussianised radar and gauged data. It is observed that the correlograms vary from day to day and display significant anisotropy. For the radar data, locally varying anisotropy (LVA) was examined by developing the correlogram centred on each pixel and for different radial distances. Cross-validation was carried out using the empirical correlogram tables, as well as different fitting strategies of a two-dimensional exponential distribution for both the gauged and the radar data. The results indicate that the correlograms based on the radar data outperform the gauged ones as judged by statistical measures including root mean square error, mean bias, mean absolute bias, mean standard deviation and mean inter-quartile range. While the radar data display significant LVA, it was observed that LVA did not significantly improve the estimates compared with the global anisotropy. This was also confirmed by conditional simulation of 120 rainfields using different options of correlogram development.
EDITOR M.C. Acreman; ASSOCIATE EDITOR Q. Zhang  相似文献   

3.
4.
Considerable uncertainty occurs in the parameter estimates of traditional rainfall–water level transfer function noise (TFN) models, especially with the models built using monthly time step datasets. This is due to the equal weights assigned for rainfall occurring during both water level rise and water level drop events while estimating the TFN model parameters using the least square technique. As an alternative to this approach, a threshold rainfall-based binary-weighted least square method was adopted to estimate the TFN model parameters. The efficacy of this binary-weighted approach in estimating the TFN model parameters was tested on 26 observation wells distributed across the Adyar River basin in Southern India. Model performance indices such as mean absolute error and coefficient of determination values showed that the proposed binary-weighted approach of fitting independent threshold-based TFN models for water level rise and water level drop scenarios considerably improves the model accuracy over other traditional TFN models.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Fiori  相似文献   

5.
Assessing the probability of extreme precipitation events is consequential in civil planning. This requires an understanding of how return values change with return periods, which is essentially described by the generalized extreme value (GEV) shape parameter. Some works in the field suggest a constant shape parameter, while our analysis indicates a non-universal value. We re-analysed an older precipitation dataset (169 stations) extended by Norwegian data (71 stations). We showed that while each set seems to have a constant shape parameter, it differs between the two datasets, indicating regional differences. For a more comprehensive analysis of spatial effects, we examined a global dataset (1495 stations). We provided shape parameter maps for two models and found clear evidence that the shape parameter depends on elevation, while the effect of latitude remains uncertain. Our results confirm an explanation in terms of dominating precipitation systems based on a proxy derived from the Köppen-Geiger climate classification.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

6.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

7.
A short‐term flood inundation prediction model has been formulated based on the combination of the super‐tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one‐dimensional (1D) hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically‐based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super‐tank model into the 1D hydraulic model demonstrates a minimal requirement for the calibration of rainfall–runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the 1D flood propagation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

9.
ABSTRACT

This paper deals with the question of whether a lumped hydrological model driven with lumped daily precipitation time series from a univariate single-site weather generator can produce equally good results compared to using a multivariate multi-site weather generator, where synthetic precipitation is first generated at multiple sites and subsequently lumped. Three different weather generators were tested: a univariate “Richardson type” model, an adapted univariate Richardson type model with an improved reproduction of the autocorrelation of precipitation amounts and a semi-parametric multi-site weather generator. The three modelling systems were evaluated in two Alpine study areas by comparing the hydrological output with respect to monthly and daily statistics as well as extreme design flows. The application of a univariate Richardson type weather generator to lumped precipitation time series requires additional attention. Established parametric distribution functions for single-site precipitation turned out to be unsuitable for lumped precipitation time series and led to a large bias in the hydrological simulations. Combining a multi-site weather generator with a hydrological model produced the least bias.  相似文献   

10.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.

EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang  相似文献   

11.
The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.  相似文献   

12.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

13.
This study developed a correction approach to improve the rainfall field estimation using the TRMM rainfall product in a sparsely-gauged mountainous basin. First, Thiessen polygons were generated to define the measurement domain of each raingauge. Second, the rainfall of TRMM pixels in each Thiessen polygon was corrected using a benchmark method based on the difference between the monthly rainfall estimated by a raingauge and the TRMM pixel that possessed a gauge station (referred to as a gauged pixel). Third, the rainfall values in the gauged pixels were adjusted to the weighted average value of the gauge rainfall and corrected pixel rainfall. Finally, the rainfall in the non-gauged TRMM pixels was corrected as the sum of two terms. The first term is the adjusted rainfall in the corresponding gauged pixel in the same Thiessen polygon, and the second term is the rainfall (after benchmark correction) difference between the current pixel and the gauged pixel. Our results indicate that the corrected rainfall data outperforms the original TRMM product in the simulations of moderate and low flows and outperforms the sparse raingauges in the simulations of both peak and low flows.

EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

14.
West Africa experienced severe drought during the 1970s and 1980s, posing a threat to water resources. A wetter climate more recently suggests recovery from the drought. The Mann-Kendall trend and Theil-Sen’s slope estimator were applied to detect probable trends in weather elements in four sub-basins of the Niger River Basin between 1970 and 2010. The cross-entropy method was used to detect breakpoints in rainfall and runoff, Spearman’s rank test for correlation between the two, and cross-correlation analysis for possible lags. Results showed an overall increase in rainfall and runoff and a decrease in sunshine duration. Spearman’s coefficients suggest significant (5%) moderate to strong rainfall–runoff correlation for three sub-basins. A significant lower runoff was observed around 1979, with a rainfall break around 1992, indicating possible cessation of the drought. Temperatures increased significantly, at 0.02–0.05°C year-1, with a negative wind speed trend for most stations. Half of the stations exhibited an increase in potential evapotranspiration.
EDITOR M.C. Acreman

ASSOCIATE EDITOR Not assigned  相似文献   

15.
Abstract

Abstract After the destructive flood in 1998, the Chinese government planned to build national weather radar networks and to use radar data for real-time flood forecasting. Hence, coupling of weather radar rainfall data and a hydrological (Xinanjiang) model became an important issue. The present study reports on experience in such coupling at the Shiguanhe watershed. After having corrected the radar reflectivity and the attenuation data, the weather radar rainfall was estimated and then corrected in real time using a Kalman filter. In general, the precipitation estimated from weather radar is reasonably accurate in most of the catchment investigated, after corrections as above. Compared to the results simulated by raingauge data, the simulations based on the weather radar data are of similar accuracy. Present research results show that rainfall estimated from the weather radar, the radar data correction method, the method of coupling, and the Xinanjiang model lend themselves well to application in operational real-time flood forecasting.  相似文献   

16.
The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and daily temporal scale. The primary factors influencing the dataset precision are elevation and terrain complexity. In general, the gridded dataset has a relatively high precision in plains and flatlands and a relatively low precision in mountainous areas.  相似文献   

17.
Rising in the Andes, the Madeira River drains the southwestern part of the Amazon basin, which is characterized by high geographical, biological and climatic diversity. This study uses daily records to assess the spatio-temporal runoff variability in the Madeira sub-basins. Results show that inter-annual variability of both discharge and rainfall differs between Andean and lowland tributaries. High-flow discharge variability in the Andean tributaries and the Guaporé River is mostly related to sea surface temperature (SST) in the equatorial Pacific in austral summer, while tropical North Atlantic (TNA) SST modulates rainfall and discharge variability in the lowlands. There also is a downward trend in the low-flow discharge of the lowland tributaries which is not observed in the Andes. Because low-flow discharge values at most lowland stations are negatively related to the SST in the tropical North Atlantic, these trends could be explained by the warming of this ocean since the 1970s.
EDITOR A. Castellarin

ASSOCIATE EDITOR A. Viglione  相似文献   

18.
Abstract

A modelling scheme is developed for real-time flood forecasting. It is composed of (a) a rainfall forecasting model, (b) a conceptual rainfall-runoff model, and (c) a stochastic error model of the ARMA family for forecast error correction. Initialization of the rainfall-runoff model is based on running this model on a daily basis for a certain period prior to the flood onset while parameters of the error model are updated through the Recursive Least Squares algorithm. The scheme is suitable for the early stages of operation of flood forecasting systems in the presence of inadequate historical data. A validation framework is set up which simulates real-time flood forecasting conditions. Thus, the effects of the procedures for rainfall-runoff model initialization, forecast error correction and rainfall forecasting are assessed. Two well-known conceptual rainfall-runoff models (the Soil Moisture Accounting model of the US National Weather Service River Forecast Service—SMA-NWSRFS and TANK) together with data from a Greek basin are used for illustration purposes.  相似文献   

19.
Abstract

A stochastic weather generator has been developed to simulate long daily sequences of areal rainfall and station temperature for the Belgian and French sub-basins of the River Meuse. The weather generator is based on the principle of nearest-neighbour resampling. In this method rainfall and temperature data are sampled simultaneously from multiple historical records with replacement such that the temporal and spatial correlations are well preserved. Particular emphasis is given to the use of a small number of long station records in the resampling algorithm. The distribution of the 10-day winter maxima of basin-average rainfall is quite well reproduced. The generated sequences were used as input for hydrological simulations with the semi-distributed HBV rainfall–runoff model. Though this model is capable of reproducing the flood peaks of December 1993 and January 1995, it tends to underestimate the less extreme daily peak discharges. This underestimation does not show up in the 10-day average discharges. The hydrological simulations with the generated daily rainfall and temperature data reproduce the distribution of the winter maxima of the 10-day average discharges well. Resampling based on long station records leads to lower rainfall and discharge extremes than resampling from the data over a shorter period for which areal rainfall was available.  相似文献   

20.
We propose a method based on the local breeding of growing modes (LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error (RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread, and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast, improving the performance of the ensemble forecast system. In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号