首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   5篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
4.
To simulate the behavior of radionuclides along a salinity gradient, in vitro sorption and desorption kinetics of Co, Mn, Cs, Fe, Ag, Zn and Cd were studied in Loire river water and the macrotidal Loire estuarine water over two different seasons. Partitioning between the dissolved phase and suspended solids were followed up over 100 h after adding radioactive tracers to freshly collected freshwater (sorption stage); this stage was followed by desorption in fresh and estuarine waters. A kinetic model describing the interactions between trace metals and particles under a salinity gradient was developed and calibrated. Among parameters and/or processes that control the fate and behavior of contaminated particles during their transfer in estuarine systems, this study shows that the speciation of trace metals is controlled by: (i) the chemical water composition: for all the elements except for Fe, desorption increased with salinity; however, the amplitude of such an effect strongly depended on the element and/or on the composition of the particulate phase (and consequently on the season); (ii) the possibility for a given element to form (or not) stable surface particle moieties such as oxides or inner-sphere complexes; (iii) the distribution of a given element among different types of sites characterised by different binding forces that can lead (or not) to re-adsorption processes after mixing of contaminated particles with uncontaminated water.Our model enabled the quantification of the contribution and the characteristic time of reactions that took place over short and long periods on the global partitioning between particulate and dissolved phases during sorption and desorption and to determine the extent to which these reactions were modified by the salinity.  相似文献   
5.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.

EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号