首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


2.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

3.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

4.
《Applied Geochemistry》2000,15(7):1003-1018
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (<10%) of colloidal Al, Fe and Zn from the water column.  相似文献   

5.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

6.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

7.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

8.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

9.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   

10.
This study was designed to establish the distributions of trace metals (Cd, Co, Cu, Ni, Pb, and Zn), dissolved organic carbon (DOC), and inorganic nutrients (PO4 and H4SiO4) in the water column of the small, relatively pristine Peconic River estuary. We were also able to examine the effects of a harmful microalgal bloom, known as the brown tide, which occurred in the area during our study. Because river inflow to the Peconic estuary is restricted by a small dam at the head of the estuary, direct evaluation of the relative importance of riverine inputs on estuarine metal distributions was possible. The simultaneous analyses of geochemical carrier metals (Al, Fe, and Mn), an indicator of sewage (Ag), and other ancillary parameters (e.g., suspended particulate matter, dissolved O2, chlorophylla) were used to describe the major processes controlling metal concentrations in the dissolved phase. The trace metal distributions indicated two distinct biogeochemical regimes within the estuary: an anthropogenically perturbed region with high metal levels (e.g., Ag, 165 pM; Cu, 51 nM; Zn, 57 nM) at the head (Flanders Bay), and a larger outer region with relatively low metal concentrations. The very similar distributions of some metals (e.g., Mn, Ni) in the Peconic estuary compared to those in estuaries having much higher river flow demonstrated the dominant role of internal processes (e.g., diagenetic remobilization) in controlling these metal patterns. An inverse relationship between dissolved Fe and DOC with cell counts of the brown tide microalgaeAureococcus anophagefferens in our field study suggested a close association with the bloom, although a similar relationship was observed between dissolved Al and brown tide cell counts, implying that removal of Fe could be due to particle scavenging rather than biological uptake.  相似文献   

11.
贵阳市大气降水中的重金属特征   总被引:17,自引:0,他引:17  
胡健  张国平  刘丛强 《矿物学报》2005,25(3):257-262
采集了贵阳市2003年9月—2004年10月的72场降雨样品,用ICP-MS测定了雨水溶解态的Pb、Zn、Cu、Fe、Mn、Al、Sr等重金属离子,阐述了贵阳市降雨的重金属含量特征,并分析了重金属的来源及变化规律。结果表明,贵阳市雨水重金属含量高,Fe、Mn、Cu、Pb、Zn均高于地表水,雨水的重金属含量受人为因素影响明显,燃煤及汽车尾气是雨水重金属的主要来源,为评价贵阳市大气中的重金属污染提供了有力的证据。  相似文献   

12.
《Applied Geochemistry》1995,10(3):285-306
Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the <60-μm fraction of the bed sediment. The highest concentrations of metals in water, colloids, and bed sediments occurred just downstream from California Gulch. Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids for about 10 km downstream from California Gulch. Farther downstream, concentrations of Fe and Cu in tributary sediments mask the signal of mining inflows. These results indicate that colloids indeed influence the occurrence and transport of metals in rivers affected by mining.  相似文献   

13.
The distributions of Fe, Mn, Zn, Cu, Ni, Cd and Co have been determined in a section across the Scotian Shelf into the Atlantic Slope water. Significant differences in concentration exist for most of the trace metals between the four water masses in the section. Depletions of trace metal concentration in the highly productive Atlantic Slope water relative to the underlying Central Atlantic water are thought to be due to biological activity.The distributions of Fe and Mn are strongly related to the distribution of suspended particulate matter. The concentrations of Fe and Mn, extracted from the suspended matter on the Scotian Shelf, are considerably higher than those in the non-detrital fraction of the underlying sediments. This suggests that post-depositional changes cause the loss of both elements from the non-detrital fraction of the particles. Whereas Mn shows major nearshore increases in concentration related to continental runoff, nearshore Fe concentrations are largely controlled by particulate matter distribution. Continental runoff does not appear to have much influence upon the distributions of the other trace metals.  相似文献   

14.
 Temporal and spatial variability of particulate metal concentrations (Cu, Cr, Zn, Mn and Fe) were investigated in the lower drainage basin of the Paraíba do Sul River. The results showed that the spatial variability was not important for all the studied metals, however, temporal variations seems to be considerable. In general, two distinct behaviors were observed for particulate heavy metals: (1) metal concentration increase together with water flow (Fe and Cu) and (2) concentration decrease with increasing water flux (Zn, Cr and Mn). The Fe and Cu behavior is probably due to the strong association of these metals with surface runoff, although their sources seem to be distinct. Iron probably originates from the regional soils rich in iron oxides, and Cu is possibly associated to the large-scale use of copper fungicides in the sugar cane plantations. The opposite trend observed for Zn, Cr and Mn probably reflects the importance of the industrial and urban effluents as a secondary source of these elements for the system. Their behavior is probably associated with the dilution effect caused by the input of a suspended matter poor in these metals originated from the surface runoff during the rainy season. Received: 4 March 1998 · Accepted: 30 June 1998  相似文献   

15.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

16.
《Applied Geochemistry》2002,17(8):1081-1092
Different types of fine-grained chemical precipitates were characterized in the surroundings of the pyrite-chalcopyrite mine of Libiola (Northern Italy). Both water chemistry and sediment composition were used to investigate metal mobility near the mine area. Local drainage waters were very acidic (with a pH as low as 2.5) and were rich in dissolved metals (Fe, Al, Cu, Zn, Mn, Ni). Sediments associated with low pH water (pH <4.5) were ochreous mixtures of schwertmannite and goethite with traces of jarosite. Their chemistry was dominated by Fe and they had, compared to other sediments investigated, low concentrations of other metals. When the acidity decreased gradually, other precipitates formed. At a pH of approximately 5, a poorly crystalline, whitish, Al-rich precipitate occurred. At a pH between 6 and 7, a poorly crystalline, blue, Cu (Zn) rich phase was present. These “sequential” precipitation events progressively reduced the metal loading typical of the acidic mine water when there was a gradual mixing with normal water. When a sudden mixing between normal waters (pH ∼8, Ca–HCO3, low metal bearing) and acidic waters took place, a rapid flocculation occurred of mixed precipitates containing Fe, Al and trace elements.  相似文献   

17.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

18.
19.
Seasonal dynamics of dissolved trace metals (Cd, Co, Cu, Ni and Zn) and its relationship with redox conditions and phytoplankton activity has been studied in the Scheldt estuary, during nine surveys carried out between May 1995 and June 1996. Seasonal profiles of dissolved trace metals and general estuarine water quality variables are compared, to identify the geochemical and biological processes responsible for the observed trace metal distributions. In keeping with previous studies, the behavior of dissolved Cd, Cu, and Zn can be explained by the presence of anoxic headwaters and the restoration of dissolved oxygen within the estuary. In the river water, the concentration of dissolved Cu and Zn is generally low, except during winter when dissolved oxygen is present in the water column, although highly undersaturated. Mobilization of particle-bound Cd, Cu, and Zn occurs as dissolved oxygen increases with increasing salinity, possibly because of oxidation of metal sulfides in the suspended matter. The geochemistry of dissolved Co is also related to the redox conditions but in an opposite way. Dissolved Co is mobilized in the anoxic upper estuary, along with the reduction in Mn (hydro) oxides, and subsequently coprecipitated with Mn (hydro) oxides when dissolved oxygen is restored. Conservative behavior is observed for dissolved Ni within the estuary. In the middle estuary, Cd and Zn are readsorbed during phytoplankton blooms, as suggested by the low concentrations of these metals during the most productive periods in spring and early summer. The removal may be caused by direct biological uptake and/or increased adsorption to suspended matter because of the pH increase associated with algae blooms. In the lower estuary, chemical gradients are much weaker and dilution with seawater is the dominant process.  相似文献   

20.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号