首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the lack of knowledge on dynamics of the North Atlantic Oscillation (NAO) prior to the last millennium, synchronized records of air temperature and precipitation variability are needed to understand large-scale drivers of the hydroclimate. Here, we use completely synchronized paleolimnological proxy-based records of air temperature and effective precipitation from two Scandinavian lakes with ~2000-year sediment profiles. We show that the relationship between air temperature and precipitation (T/P ratio) is synchronous in both study sites throughout the records suggesting warm and dry conditions at ~300–1100 CE and cold and wet conditions at ~1200–1900 CE. Owing to the significantly increased air temperatures, the most recent T/P ratio has again turned positive. During the first millennium of the Common Era, the T/P mimics patterns in Southern Oscillation index, whereas the second millennium shows response to the NAO index but is also concurrent with solar irradiance shifts. Since our T/P reconstruction is mostly linked with the NAO, we propose the T/P ratio as an indicator of the NAO. Our results from the coherent records provide first-time knowledge on the long-term temperature-precipitation relationship in Northern Europe that increase understanding of the comprehensive hydroclimate system in the region and the NAO dynamics also further back in time.  相似文献   

2.
The spatial and temporal distributions of marine cold air outbreaks (MCAOs) over the northern North Atlantic have been investigated using re-analysis data for the period from 1958 to 2007. MCAOs are large-scale outbreaks of cold air over a relatively warm ocean surface. Such conditions are known to increase the severity of particular types of hazardous mesoscale weather phenomena. We used a simple index for identifying MCAOs: the vertical potential temperature gradient between the sea surface and 700 hPa. It was found that atmospheric temperature variability is considerably more important than the sea surface temperature variability in governing both the seasonal and the inter-annual variability of MCAOs. Furthermore, a composite analysis revealed that a few well-defined and robust synoptic patterns are evident during MCAOs in winter. Over the Labrador and Irminger Seas the MCAO index was found to have a correlation of 0.70 with the North Atlantic Oscillation index, while over the Barents Sea a negative correlation of 0.42 was found.  相似文献   

3.
Portions of the southern and southeastern United States, primarily Mississippi, Alabama, and Georgia, have experienced century-long (1895–2007) downward air temperature trends that occur in all seasons. Superimposed on them are shifts in mean temperatures on decadal scales characterized by alternating warm (1930s–1940s, 1990s) and cold (1900s; 1960s–1970s) regimes. Regional atmospheric circulation and SST teleconnection indices, station-based cloud cover and soil moisture (Palmer drought severity index) data are used in stepwise multiple linear regression models. These models identify predictors linked to observed winter, summer, and annual Southeastern air temperature variability, the observed variance (r2) they explain, and the resulting prediction and residual time series. Long-term variations and trends in tropical Pacific sea temperatures, cloud cover, soil moisture and the North Atlantic and Arctic oscillations account for much of the air temperature downtrends. Soil moisture and cloud cover are the primary predictors of 59.6 % of the observed summer temperature variance. While the teleconnections, cloud cover and moisture data account for some of the annual and summer Southeastern cooling trend, large significant downward trending residuals remain in winter and summer. Comparison is made to the northeastern United States where large twentieth century upward air temperature trends are driven by cloud cover increases and Atlantic Multidecadal Oscillation (AMO) variability. Differences between the Northeastern warming and the Southeastern cooling trends in summer are attributable in part to the differing roles of cloud cover, soil moisture, the Arctic Oscillation and the AMO on air temperatures of the 2 regions.  相似文献   

4.
Arctic sea ice responds to atmospheric forcing in primarily a top-down manner, whereby near-surface air circulation and temperature govern motion, formation, melting, and accretion. As a result, concentrations of sea ice vary with phases of many of the major modes of atmospheric variability, including the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño-Southern Oscillation. However, until this present study, variability of sea ice by phase of the leading mode of atmospheric intraseasonal variability, the Madden–Julian Oscillation (MJO), which has been found to modify Arctic circulation and temperature, remained largely unstudied. Anomalies in daily change in sea ice concentration were isolated for all phases of the real-time multivariate MJO index during both summer (May–July) and winter (November–January) months. The three principal findings of the current study were as follows. (1) The MJO projects onto the Arctic atmosphere, as evidenced by statistically significant wavy patterns and consistent anomaly sign changes in composites of surface and mid-tropospheric atmospheric fields. (2) The MJO modulates Arctic sea ice in both summer and winter seasons, with the region of greatest variability shifting with the migration of the ice margin poleward (equatorward) during the summer (winter) period. Active regions of coherent ice concentration variability were identified in the Atlantic sector on days when the MJO was in phases 4 and 7 and the Pacific sector on days when the MJO was in phases 2 and 6, all supported by corresponding anomalies in surface wind and temperature. During July, similar variability in sea ice concentration was found in the North Atlantic sector during MJO phases 2 and 6 and Siberian sector during MJO phases 1 and 5, also supported by corresponding anomalies in surface wind. (3) The MJO modulates Arctic sea ice regionally, often resulting in dipole-shaped patterns of variability between anomaly centers. These results provide an important first look at intraseasonal variability of sea ice in the Arctic.  相似文献   

5.
Analyzed is the interannual variability of the meridional mass transport ψS in the North Atlantic based on the Sverdrup relation. The continuous (1980–2005) monthly wind stress dataset with the spatial resolution of 1 × 1° was used as the initial data. Sverdrup transport analysis performed for different latitudinal transects within the North Atlantic subtropical gyre demonstrated that the maximum long-term Sverdrup transport (?25.2 Sv) can be found at 33°N. Studied is a mechanism of the interaction between the meridional Sverdrup transport and the water flow in the Florida Strait. The significant correlation coefficient (0.5) is revealed for the Florida Strait water discharge and the mass transport at 27°N. Analyzed is the relationship between ψS and the North Atlantic Oscillation index and the statistically significant correlation coefficient (0.45) is obtained for the Sverdrup transport at 49°N.  相似文献   

6.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

7.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

8.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

9.
Summer mean daily temperature extremes in Svalbard Lufthavn (Central Spitsbergen) in the period 1975–2010 and daily pressure patterns and directions of air circulation conducive to their occurrence were analyzed. Positive (negative) extremes of daily mean temperatures in the summer were determined as higher (lower) than or equal to the value of the 90th (10th) percentile. The annual number of selected days shows a great year-to-year variability, although the annual number of extremely low mean daily temperature (≤1.3 °C) was decreasing in the 1976–2010 period, with a rate of about 4 days per decade. At the same time, the number of days with extremely high mean daily temperatures (≤8.2 °C) was increasing with a rate of about 2 days per decade. The summer pressure patterns and the air circulation conditions have an impact on the occurrence of the air mean daily temperature extremes. Namely, anticyclones spreading east to the Svalbard Archipelago, accompanied by the Icelandic Low, cause the air inflow from the southerly direction and positive mean daily temperature extremes. A cyclonal system spreading east or southeast towards the archipelago, together with a high-pressure ridge over the North Atlantic, indicates the northern air flow and negative mean daily temperature extremes in summer. The results obtained in this study prove that the summer air temperature in the Atlantic region of the Arctic is partly controlled by air circulation, and despite the intensity and stability of the summer cyclones and anticyclones being weaker than in the winter, their position strongly determines the occurrence of mean daily temperature extremes in the summer.  相似文献   

10.
Climate variability in Europe and northern Asia is markedly affected by changes in atmospheric circulation. Two manual catalogues of large-scale circulation patterns, the ‘Grosswetterlagen’ (GWLc) and ‘Vangengeim-Girs’ classifications (VGc), were analysed and compared to detect frequency changes of circulation forms. Results were compared with variations of ‘objective’ references: variations of the North Atlantic Oscillation (NAO) and a hybrid version of the GWLc (SynopVis Grosswetterlagen catalogue, SVGc). Changes were investigated for 1901–2010, focussing on the most recent climate normal (1981–2010). Trends are moderate in the winter half year (WHY), but rather consistent between the approaches. Circulation variability within VGc/NAO and GWLc/SVGc largely agrees. In the summer half year, large trends are visible in VGc and GWLc, but their objective support by the SVGc, showing comparably small changes, is low. Changes in the distribution of circulation patterns likely fostered a larger temperature increase in the investigated regions compared to global average temperatures during the past 30 years in the WHY. The results of this study help further in investigating temperature and precipitation changes in both Europe and northern Asia.  相似文献   

11.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

12.
近百年东亚冬季气温及其大气环流变化型态   总被引:7,自引:2,他引:5  
范可  刘辉 《大气科学》2013,37(2):383-394
利用最新20世纪近百年再分析气象资料,研究近百年东亚冬季气温变化型及其相关的大气环流型态.结果表明近百年内东亚冬季气温主要有两种变化型:第一是东亚西南与东北相反气温变化型,表现在40°N以南及105°E以西地区(西南地区)气温变化与40°N以北及105°E以东地区(东北地区)变化相反;第二是40°N以南气温一致变化型.与第一种气温变化型耦合的大气模态是500hPa欧亚型遥相关、西伯利亚高压及北大西洋涛动.当欧亚型遥相关负位相,北大西洋涛动正位相及西伯利亚高压减弱时,有利于蒙古和我国105° E以东的区域增温而我国西南地区和青藏高原降温,反之亦然.第二种气温变化型耦合大气模态是500hPa西太平洋型遥相关,北太平洋涛动.当西太平洋型遥相关及北太平洋涛动处于正位相时(北太平洋北负南正),东亚40°N以南地区增温,东亚40°N以北地区降温.耦合的大气模态的型态差异,影响各阶段气温的年际变化.近一百年中,欧亚型遥相关和北大西洋涛动在1984~2010期间的型态最显著,是20世纪80年代东亚显著增暖的原因之一.研究还发现20世纪中期后东亚气温的年际变化与极地环流的变化联系紧密,表现在西伯利亚高压范围东扩并与极地环流联系,也是近百年气温趋势上升的一个原因.  相似文献   

13.
Seawater property changes in the North Atlantic Ocean affect the Atlantic meridional overturning circulation (AMOC), which transports warm water northward from the upper ocean and contributes to the temperate climate of Europe, as well as influences climate globally. Previous observational studies have focused on salinity and freshwater variability in the sinking region of the North Atlantic, since it is believed that a freshening North Atlantic basin can slow down or halt the flow of the AMOC. Here we use available data to show the importance of how density patterns over the upper ocean of the North Atlantic affect the strength of the AMOC. For the long-term trend, the upper ocean of the subpolar North Atlantic is becoming cooler and fresher, whereas the subtropical North Atlantic is becoming warmer and saltier. On a multidecadal timescale, the upper ocean of the North Atlantic has generally been warmer and saltier since 1995. The heat and salt content in the subpolar North Atlantic lags that in the subtropical North Atlantic by about 8–9 years, suggesting a lower latitude origin for the temperature and salinity anomalies. Because of the opposite effects of temperature and salinity on density for both long-term trend and multidecadal timescales, these variations do not result in a density reduction in the subpolar North Atlantic for slowing down the AMOC. Indeed, the variations in the meridional density gradient between the subpolar and subtropical North Atlantic Ocean suggest that the AMOC has become stronger over the past five decades. These observed results are supported by and consistent with some oceanic reanalysis products.  相似文献   

14.
In the snowmelt dominated hydrology of arid western US landscapes, late summer low streamflow is the most vulnerable period for aquatic ecosystem habitats and trout populations. This study analyzes mean August discharge at 153 streams throughout the Central Rocky Mountains of North America (CRMs) for changes in discharge from 1950–2008. The purpose of this study was to determine if: (1) Mean August stream discharge values have decreased over the last half-century; (2) Low discharge values are occurring more frequently; (3) Climatic variables are influencing August discharge trends. Here we use a strict selection process to characterize gauging stations based on amount of anthropogenic impact in order to identify heavily impacted rivers and understand the relationship between climatic variables and discharge trends. Using historic United States Geologic Survey discharge data, we analyzed data for trends of 40–59 years. Combining of these records along with aerial photos and water rights records we selected gauging stations based on the length and continuity of discharge records and categorized each based on the amount of diversion. Variables that could potentially influence discharge such as change in vegetation and Pacific Decadal Oscillation (PDO) were examined, but we found that that both did not significantly influence August discharge patterns. Our analyses indicate that non-regulated watersheds are experiencing substantial declines in stream discharge and we have found that 89% of all non-regulated stations exhibit a declining slope. Additionally our results here indicate a significant (α?≤?0.10) decline in discharge from 1951–2008 for the CRMs. Correlations results at our pristine sites show a negative relationship between air temperatures and discharge and these results coupled with increasing air temperature trends pose serious concern for aquatic ecosystems in CRMs.  相似文献   

15.
We examine the spatial patterns of variability of annual-mean temperature in the control runs of eight coupled atmosphere–ocean general circulation models (AOGCMs) and of observations. We characterize the patterns of variability using empirical orthogonal functions (EOFs) and using a new technique based on what we call quasi-EOFs. The quasi-EOFs are computed based on the spatial pattern of the correlation between the temperature variation at a given grid point and the temperature defined over a pre-determined reference region, with a different region used for each quasi-EOF. For the first four quasi-EOFs, the reference regions are: the entire globe, the Niño3 region, Western Europe, and Siberia. Since the latter three regions are the centers of strong anomalies associated with the El Niño, North Atlantic, and Siberian oscillations, respectively, the spatial pattern of the covariance with temperature in these regions gives the structure of the model or observed El Niño, North Atlantic, and Siberian components of variability. When EOF analysis is applied to the model control runs, the patterns produced generally have no similarity to the EOF patterns produced from observational data. This is due in some cases to large NAO-like variability appearing as part of EOF1 along with ENSO-like variability, rather than as separate EOF modes. This is a disadvantage of EOF analysis. The fraction of the model time-space variation explained by these unrealistic modes of variability is generally greater than the fraction explained by the principal observed modes of variability. When qEOF analysis is applied to the model data, all three natural modes of variability are seen to a much greater extent. However, the fraction of global time-space variability that is accounted for by the model ENSO variability is, in our analysis, less than observed for all models except the HadCM2 model, but within 20% for another three models. The space-time variation accounted for by the other modes is comparable to or somewhat larger than that observed in all models. As another teleconnection indicator, we examined both Southern Oscillation Index (SOI) and its relation to tropical Pacific Ocean temperature variations (the qEOF2 amplitude), and the North Atlantic Oscillation Index (NAOI) and its relation to North Atlantic region temperatures (the qEOF3 amplitude). All models exhibit a relationship between these indices, and the qEOF amplitudes are comparable to those observed. Furthermore, the models show realistic spatial patterns in the correlation between local temperature variations and these indices.  相似文献   

16.
Explosive cyclogenesis in the northeastern part of the Atlantic Ocean   总被引:1,自引:0,他引:1  
The formation conditions of 21 explosive cyclone in the northeastern part of the Atlantic Ocean in 1986–1999 are analyzed. The typical values are determined of some characteristics of the atmosphere and ocean accompanying the explosive cyclogenesis: North Atlantic Oscillation and East Atlantic Oscillation indices, air and water temperature, sensible and latent heat fluxes.  相似文献   

17.
The hydroclimatology of the southeastern USA (AL, GA, NC, SC, and TN) is analyzed from a holistic perspective, including multiple climate drivers. Monthly precipitation modeled by the PRISM group and runoff data (1952–2011) from 18 basins are analyzed using a single-field based principal component’s analysis. Results indicate that the Atlantic Multidecadal Oscillation and El Niño-Southern Oscillation are the main atmospheric drivers of hydroclimate variability in the region, sometimes operating at several months’ lag. Their influence is the strongest in the fall through spring, which corresponds with the dry season in the southern parts of the study area thereby increasing pressure on already limited water resources. The Arctic Oscillation, North Atlantic Oscillation, and Pacific-North American patterns vary on shorter-term bases, and also show a significant, but temporally more sporadic influence. Insight is also brought to the ongoing discussion, confirming the disassociation of the Arctic and North Atlantic Oscillation. Findings can be used in water resources forecasting, giving an indication of expected water volumes several months ahead.  相似文献   

18.
We investigate the multidecadal variability of summer temperature over Romania as measured at 14 meteorological stations with long-term observational records. The dominant pattern of summer temperature variability has a monopolar structure and shows pronounced multidecadal variations. A correlation analysis reveals that these multidecadal variations are related with multidecadal variations in the frequency of four daily atmospheric circulation patterns from the North Atlantic region. It is found that on multidecadal time scales, negative summer mean temperature (TT) anomalies are associated with positive sea level pressure (SLP) anomalies centered over the northern part of the Atlantic Ocean and Scandinavia and negative SLP anomalies centered over the northern part of Africa. It is speculated that a possible cause of multidecadal fluctuations in the frequency of these four patterns are the sea surface temperature (SST) anomalies associated to the Atlantic Multidecadal Oscillation (AMO). These results have implications for predicting the evolution of summer temperature over Romania on multidecadal time scales.  相似文献   

19.
This paper examines the mean annual cycle, interannual variability, and leading patterns of the tropical Atlantic Ocean simulated in a long-term integration of the climate forecast system (CFS), a state-of-the-art coupled general circulation model presently used for operational climate prediction at the National Centers for Environmental Prediction. By comparing the CFS simulation with corresponding observation-based analyses or reanalyses, it is shown that the CFS captures the seasonal mean climate, including the zonal gradients of sea surface temperature (SST) in the equatorial Atlantic Ocean, even though the CFS produces warm mean biases and underestimates the variability over the southeastern ocean. The seasonal transition from warm to cold phase along the equator is delayed 1 month in the CFS compared with the observations. This delay might be related to the failure of the model to simulate the cross-equatorial meridional wind associated with the African monsoon. The CFS also realistically simulates both the spatial structure and spectral distributions of the three major leading patterns of the SST anomalies in the tropical Atlantic Ocean: the south tropical Atlantic pattern (STA), the North tropical Atlantic pattern (NTA), and the southern subtropical Atlantic pattern (SSA). The CFS simulates the seasonal dependence of these patterns and partially reproduces their association with the El Niño-Southern Oscillation. The dynamical and thermodynamical processes associated with these patterns in the simulation and the observations are similar. The air-sea interaction processes associated with the STA pattern are well simulated in the CFS. The primary feature of the anomalous circulation in the Northern Hemisphere (NH) associated with the NTA pattern resembles that in the Southern Hemisphere (SH) linked with the SSA pattern, implying a similarity of the mechanisms in the evolution of these patterns and their connection with the tropical and extratropical anomalies in their respective hemispheres. The anomalies associated with both the SSA and NTA patterns are dominated by atmospheric fluctuations of equivalent-barotropic structure in the extratropics including zonally symmetric and asymmetric components. The zonally symmetric variability is associated with the annular modes, the Arctic Oscillation in the NH and the Antarctic Oscillation in the SH. The zonally asymmetric part of the anomalies in the Atlantic is teleconnected with the anomalies over the tropical Pacific. The misplaced teleconnection center over the southern subtropical ocean may be one of the reasons for the deformation of the SSA pattern in the CFS.  相似文献   

20.
We investigate the temporal patterns in inter-annual variability in ice breakup dates for Lakes Mendota and Monona, Wisconsin, between 1905 and 2004. We analyze the contributions of long-term trends attributed to climate change, local weather, indices of sunspots, and large-scale climatic drivers, such as the North Atlantic Oscillation (NAO) and El Niňo Southern Ocean Index (ENSO) on time series of lake-ice breakup. The relative importance of the aforementioned explanatory variables was assessed using linear regression and variation partitioning models accounting for cyclic temporal dynamics as represented by Moran Eigenvector Maps (MEM). Model results explain an average of 58 % of the variation in ice breakup dates. A combination of the long-term linear trends, rain and snowfall in the month prior to breakup, air temperature in the winter prior to breakup, cyclic dynamics associated with sunspot numbers, ENSO, and for Lake Mendota, NAO, all significantly influence the timing of ice breakup. Significant cycle lengths were 3.5, 9, 11, and 50 years. Despite their proximity, Lakes Mendota and Monona exhibit differences in how and which explanatory variables were incorporated into the models. Our results indicate that lake ice dynamics are complex in both lakes and multiple interacting processes explain the residuals around the linear warming trends that characterize lake ice records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号