首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10752篇
  免费   792篇
  国内免费   239篇
测绘学   398篇
大气科学   1122篇
地球物理   3330篇
地质学   4003篇
海洋学   810篇
天文学   1077篇
综合类   207篇
自然地理   836篇
  2021年   71篇
  2020年   69篇
  2019年   95篇
  2018年   549篇
  2017年   485篇
  2016年   404篇
  2015年   291篇
  2014年   312篇
  2013年   435篇
  2012年   871篇
  2011年   675篇
  2010年   302篇
  2009年   433篇
  2008年   399篇
  2007年   371篇
  2006年   343篇
  2005年   1011篇
  2004年   1043篇
  2003年   829篇
  2002年   351篇
  2001年   199篇
  2000年   170篇
  1999年   117篇
  1998年   102篇
  1997年   103篇
  1996年   93篇
  1995年   84篇
  1994年   75篇
  1993年   63篇
  1992年   61篇
  1991年   76篇
  1990年   73篇
  1989年   63篇
  1988年   56篇
  1987年   66篇
  1986年   41篇
  1985年   73篇
  1984年   80篇
  1983年   71篇
  1982年   65篇
  1981年   76篇
  1980年   65篇
  1979年   56篇
  1978年   39篇
  1977年   55篇
  1976年   66篇
  1975年   50篇
  1974年   56篇
  1973年   49篇
  1972年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Natural Resources Research - The physical and chemical characteristics of mined phosphate rock will vary temporally as the location and nature of the ore body changes and as the type of equipment...  相似文献   
2.
Reservoir sizing is one of the most important aspects of water resources engineering as the storage in a reservoir must be sufficient to supply water during extended droughts. Typically, observed streamflow is used to stochastically generate multiple realizations of streamflow to estimate the required storage based on the Sequent Peak Algorithm (SQP). The main limitation in this approach is that the parameters of the stochastic model are purely derived from the observed record (limited to less than 80 years of data) which does not have information related to prehistoric droughts. Further, reservoir sizing is typically estimated to meet future increase in water demand, and there is no guarantee that future streamflow over the planning period will be representative of past streamflow records. In this context, reconstructed streamflow records, usually estimated based on tree ring chronologies, provide better estimates of prehistoric droughts, and future streamflow records over the planning period could be obtained from general circulation models (GCMs) which provide 30 year near-term climate change projections. In this study, we developed paleo streamflow records and future streamflow records for 30 years are obtained by forcing the projected precipitation and temperature from the GCMs over a lumped watershed model. We propose combining observed, reconstructed and projected streamflows to generate synthetic streamflow records using a Bayesian framework that provides the posterior distribution of reservoir storage estimates. The performance of the Bayesian framework is compared to a traditional stochastic streamflow generation approach. Findings based on the split-sample validation show that the Bayesian approach yielded generated streamflow traces more representative of future streamflow conditions than the traditional stochastic approach thereby, reducing uncertainty on storage estimates corresponding to higher reliabilities. Potential strategies for improving future streamflow projections and its utility in reservoir sizing and capacity expansion projects are also discussed.  相似文献   
3.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   
4.
Fault-controlled hydrothermal dolomitization in tectonically complex basins can occur at any depth and from different fluid compositions, including ‘deep-seated’, ‘crustal’ or ‘basinal’ brines. Nevertheless, many studies have failed to identify the actual source of these fluids, resulting in a gap in our knowledge on the likely source of magnesium of hydrothermal dolomitization. With development of new concepts in hydrothermal dolomitization, the study aims in particular to test the hypothesis that dolomitizing fluids were sourced from either seawater, ultramafic carbonation or a mixture between the two by utilizing the Cambrian Mount Whyte Formation as an example. Here, the large-scale dolostone bodies are fabric-destructive with a range of crystal fabrics, including euhedral replacement (RD1) and anhedral replacement (RD2). Since dolomite is cross-cut by low amplitude stylolites, dolomitization is interpreted to have occurred shortly after deposition, at a very shallow depth (<1 km). At this time, there would have been sufficient porosity in the mudstones for extensive dolomitization to occur, and the necessary high heat flows and faulting associated with Cambrian rifting to transfer hot brines into the near surface. While the δ18Owater and 87Sr/86Sr ratios values of RD1 are comparable with Cambrian seawater, RD2 shows higher values in both parameters. Therefore, although aspects of the fluid geochemistry are consistent with dolomitization from seawater, very high fluid temperature and salinity could be suggestive of mixing with another, hydrothermal fluid. The very hot temperature, positive Eu anomaly, enriched metal concentrations, and cogenetic relation with quartz could indicate that hot brines were at least partially sourced from ultramafic rocks, potentially as a result of interaction between the underlying Proterozoic serpentinites and CO2-rich fluids. This study highlights that large-scale hydrothermal dolostone bodies can form at shallow burial depths via mixing during fluid pulses, providing a potential explanation for the mass balance problem often associated with their genesis.  相似文献   
5.
We investigated the inventory of presolar silicate, oxide, and silicon carbide (SiC) grains of fine‐grained chondrule rims in six Mighei‐type (CM) carbonaceous chondrites (Banten, Jbilet Winselwan, Maribo, Murchison, Murray and Yamato 791198), and the CM‐related carbonaceous chondrite Sutter's Mill. Sixteen O‐anomalous grains (nine silicates, six oxides) were detected, corresponding to a combined matrix‐normalized abundance of ~18 ppm, together with 21 presolar SiC grains (~42 ppm). Twelve of the O‐rich grains are enriched in 17O, and could originate from low‐mass asymptotic giant branch stars. One grain is enriched in 17O and significantly depleted in 18O, indicative of additional cool bottom processing or hot bottom burning in its stellar parent, and three grains are of likely core‐collapse supernova origin showing enhanced 18O/16O ratios relative to the solar system ratio. We find a presolar silicate/oxide ratio of 1.5, significantly lower than the ratios typically observed for chondritic meteorites. This may indicate a higher degree of aqueous alteration in the studied meteorites, or hint at a heterogeneous distribution of presolar silicates and oxides in the solar nebula. Nevertheless, the low O‐anomalous grain abundance is consistent with aqueous alteration occurring in the protosolar nebula and/or on the respective parent bodies. Six O‐rich presolar grains were studied by Auger Electron Spectroscopy, revealing two Fe‐rich silicates, one forsterite‐like Mg‐rich silicate, two Al‐oxides with spinel‐like compositions, and one Fe‐(Mg‐)oxide. Scanning electron and transmission electron microscopic investigation of a relatively large silicate grain (490 nm × 735 nm) revealed that it was crystalline åkermanite (Ca2Mg[Si2O7]) or a an åkermanite‐diopside (MgCaSi2O6) intergrowth.  相似文献   
6.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
7.
Permafrost thaw in peatlands is one of the most widespread and worrying consequences of climate warming in the sub-Arctic area. To predict future climate feedbacks, it is important to study the history of permafrost aggradation and thaw. Plant macrofossil analysis with radiocarbon dating has been widely used in detecting past permafrost dynamics in peatlands, however, due to a lack of permafrost-specific plant indicator species, determining the exact timing of permafrost aggradation remains a challenge. In this study, we investigated if oribatid mites can be used to determine Holocene permafrost aggradation and degradation in Canadian mires. Based on analyses of subfossil oribatid mite assemblages of Holocene peat profiles from two mires in the Hudson Bay Lowlands area, our results suggest that two species, Carabodes labyrinthicus and Neoribates aurantiacus, are useful bioindicators, which can be used in palaeoecological studies determining permafrost histories. Moreover, our results show that subfossil oribatid mite remains can reveal periods of permafrost, which cannot be determined with certainty based on plant macrofossils alone.  相似文献   
8.
Mathematical Geosciences - The universality of fractals implies that very different physical processes can give rise to similar complex spatial patterns. Sinkholes (dolines) and galaxies provide a...  相似文献   
9.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   
10.
The Kerio Valley basin in Kenya has undergone several periods of drought, yet drought patterns in the region are not well understood due to limited climatic data. Drought events in the region have resulted in crop failure and livestock deaths, exacerbating food shortages. In this study, the Standardized Precipitation Evapotranspiration Index (SPEI), a multi‐scalar drought index was used to examine the onset, duration, severity, intensity, and frequency of agricultural and hydrological drought in the region. The gridded 0.5° × 0.5° climatic datasets from Climatic Research Unit for the period 1960?2016 was used for analysis. Temporal evolutions of SPEI at 6‐ and 12‐month lags were subsequently used to evaluate agricultural and hydrological drought, respectively. Additionally, the Mann‐Kendall trend test was used to test for trends in the time series. Results from the analysis show that: 1) droughts are becoming more frequent in the region, 2) drought intensities in the arid and semi‐arid lands have weakened, 3) regions west of the Kerio River have recently recorded a wetting trend, and 4) the southern and central regions of the basin are drought‐prone. Understanding the spatial and temporal patterns of drought in the basin can assist in drought preparation and mitigation planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号