首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Walkaway vertical seismic profile (VSP) data acquired in basalt‐covered areas can be used to improve knowledge of the sub‐basalt structure. A synthetic example and a case study from the North Atlantic (UK) show that elastic two‐way downward‐continuation migration combined with the stationary‐phase principle is well suited to the processing of VSP data. Vector data are processed using decoupled elastic migration algorithms in both isotropic and anisotropic media. To illustrate the value of decoupled imaging equations, conventional PP imaging is carried out on the enhanced VSP data and compared with the decoupled scheme. Decoupled vector migration operates directly on the displacement vector, and uses various wave modes. Downgoing waves are migrated to image basalt lava flows and measure their anisotropy. Upgoing waves are used for high‐resolution sub‐basalt imaging.  相似文献   

2.
针对高速玄武岩屏蔽层下深层成像困难的实际问题,采用波动方程波场数值模拟技术,根据玄武岩地层的特点,设计三个相应的简单高速玄武岩模型,通过对深层反射地震信号能量的分析,说明了低频地震信号既具有较强的穿透薄高速玄武岩屏蔽层的能力,也具有减弱因粗糙表面所产生的绕射噪音的能力。一个完整的2D玄武岩模型的模拟试验证明了利用低频信号可以提高高速玄武岩屏蔽层下深层成像的质量,实际资料的低通滤波处理也取得了预期的效果。  相似文献   

3.
20世纪末中海油在南海油气勘探中成功试验了二维多分量地震技术.其后十多年,中海油进一步在不同近海油气盆地采集了三维多分量OBC地震资料.但由于针对三维转换波的处理未能形成有效的关键技术,除双检叠加利用了水压分量和陆检垂直分量外,大量水平分量数据未被使用.鉴于此,中海油在十二五期间开展三维多分量地震数据处理的关键技术攻关:针对弹性波场的矢量特征、转换波射线路径不对称以及双程旅行时多时间尺度等问题,成功研发了矢量化的信号处理技术、弹性波速度建模以及叠前时间偏移成像等技术;集成了相对完善的三维弹性波成像EWI软件系统;完成了多个试验区的三维四分量OBC地震转换波的处理,取得了好于以往技术的效果;建立了海上多分量OBC地震资料处理流程.但相对于成熟的纵波处理技术,海洋多分量地震处理技术仍需要不断完善与发展.  相似文献   

4.
油气勘探需要重新开发玄武岩下目的层的成像技术。我们今天遇到的最重要的问题之一是玄武岩下地震成像。近年来,由于利用长炮检距这个问题部分已经得到解决。然而,由于地表以及玄武岩的内部非均质性引起的复杂波形,近炮检距的资料仍然不能充分地被利用。影响玄武岩下成像的近垂直入射资料对于了解玄武岩层内部结构是十分有用的。对比较均匀的玄武岩目标层可选用转换波。这里我们利用几个合成模型例子重点描述了更接近现实的非均质玄武岩流引起的实际困难。模拟计算了全波地震记录以有助于了解玄武岩内沉积物对地震资料的影响。本文介绍了印度德干圈闭的一个研究实例。首先探讨了夹层沉积物对整个地震成像的影响。其次利用该区声测井资料以反射系数法计算全波场响应与实际地震资料对比, 通过一系列速度-深度剖面探讨了利用模式转换波(顶底玄武岩界面上的P波转化为S波或相反)对印度库奇地区玄武岩下成像的可行性。通过与野外资料相比较证明玄武岩中多个薄层的效应严重恶化我们所要解释和利用的图象的质量。  相似文献   

5.
Due to the complicated geophysical character of tight gas sands in the Sulige gasfield of China, conventional surface seismic has faced great challenges in reservoir delineation. In order to improve this situation, a large‐scale 3D‐3C vertical seismic profiling (VSP) survey (more than 15 000 shots) was conducted simultaneously with 3D‐3C surface seismic data acquisition in this area in 2005. This paper presents a case study on the delineation of tight gas sands by use of multi‐component 3D VSP technology. Two imaging volumes (PP compressional wave; PSv converted wave) were generated with 3D‐3C VSP data processing. By comparison, the dominant frequencies of the 3D VSP images were 10–15 Hz higher than that of surface seismic images. Delineation of the tight gas sands is achieved by using the multi‐component information in the VSP data leading to reduce uncertainties in data interpretation. We performed a routine data interpretation on these images and developed a new attribute titled ‘Centroid Frequency Ratio of PSv and PP Waves’ for indication of the tight gas sands. The results demonstrated that the new attribute was sensitive to this type of reservoir. By combining geologic, drilling and log data, a comprehensive evaluation based on the 3D VSP data was conducted and a new well location for drilling was proposed. The major results in this paper tell us that successful application of 3D‐3C VSP technologies are only accomplished through a synthesis of many disciplines. We need detailed analysis to evaluate each step in planning, acquisition, processing and interpretation to achieve our objectives. High resolution, successful processing of multi‐component information, combination of PP and PSv volumes to extract useful attributes, receiver depth information and offset/ azimuth‐dependent anisotropy in the 3D VSP data are the major accomplishments derived from our attention to detail in the above steps.  相似文献   

6.
In many areas of the world, the presence of shallow high velocity, highly heterogeneous layers complicate seismic imaging of deeper reflectors. Of particular economic interest are areas where potentially hydrocarbon-bearing strata are obscured by layers of basalt. Basalt layers are highly reflective and heterogeneous. Using reflection seismic, top basalt is typified by a high-amplitude, coherent reflector with poor resolution of reflectors below the basalt, and even bottom basalt. Here, we present a new approach to the imaging problem using the pattern recognition abilities of a back-propagation Artificial Neural Network (ANN). ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Back-propagation neural networks are trained on data sets for which the solution is known and tested on the data that are not previously presented to the ANN in order to validate the network result. We show that Artificial Neural Networks, due to their pattern recognition capabilities, can invert the medium statistics based on the seismic character. We produce statistically defined models involving a basalt analogous layer, and calculate full wavefield finite difference synthetic seismograms. We vary basalt layer thickness and source frequency to generate a synthetic model that produces seismic that is similar to real sub-basalt seismic, i.e. high amplitude top basalt reflector and the absence of base basalt and sub-basalt events. Using synthetic shot gathers, generated in a synthetic representation of the sub-basalt case, we can invert the velocity medium standard deviation by using an ANN. By inverting the velocity medium standard deviation, we successfully identified the transition from basalt to sub-basalt on the synthetic shot gathers. We also show that ANNs are capable of identifying the basalt to sub-basalt transition in the presence of incoherent noise. This is important for any future applications of this technique to the real-world seismic data, as this data is never completely noise-free. There is always a certain level of residual (noise remaining after initial noise filtering) environmental/ambient noise present on the recorded seismics, hence, neural network training with noise-free synthetic seismic is less than optimal.  相似文献   

7.
Vertical fractures with openings of less than one centimetre and irregular karst cause abundant diffractions in Ground‐Penetrating Radar (GPR) records. GPR data acquired with half‐wavelength trace spacing are uninterpretable as they are dominated by spatially undersampled scattered energy. To evaluate the potential of high‐density 3D GPR diffraction imaging a 200 MHz survey with less than a quarter wavelength grid spacing (0.05 m × 0.1 m) was acquired at a fractured and karstified limestone quarry near the village of Cassis in Southern France. After 3D migration processing, diffraction apices line up in sub‐vertical fracture planes and cluster in locations of karstic dissolution features. The majority of karst is developed at intersections of two or more fractures and is limited in depth by a stratigraphic boundary. Such high‐resolution 3D GPR imaging offers an unprecedented internal view of a complex fractured carbonate reservoir model analogue. As seismic and GPR wave kinematics are similar, improvements in the imaging of steep fractures and irregular voids at the resolution limit can also be expected from high‐density seismic diffraction imaging.  相似文献   

8.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

9.
Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.  相似文献   

10.
In this case study we consider the seismic processing of a challenging land data set from the Arabian Peninsula. It suffers from rough top‐surface topography, a strongly varying weathering layer, and complex near‐surface geology. We aim at establishing a new seismic imaging workflow, well‐suited to these specific problems of land data processing. This workflow is based on the common‐reflection‐surface stack for topography, a generalized high‐density velocity analysis and stacking process. It is applied in a non‐interactive manner and provides an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. The implementation introduced combines two different approaches to topography handling to minimize the computational effort: after initial values of the stacking parameters are determined for a smoothly curved floating datum using conventional elevation statics, the final stack and also the related residual static correction are applied to the original prestack data, considering the true source and receiver elevations without the assumption of nearly vertical rays. Finally, we extrapolate all results to a chosen planar reference level using the stacking parameters. This redatuming procedure removes the influence of the rough measurement surface and provides standardized input for interpretation, tomographic velocity model determination, and post‐stack depth migration. The methodology of the residual static correction employed and the details of its application to this data example are discussed in a separate paper in this issue. In view of the complex near‐surface conditions, the imaging workflow that is conducted, i.e. stack – residual static correction – redatuming – tomographic inversion – prestack and post‐stack depth migration, leads to a significant improvement in resolution, signal‐to‐noise ratio and reflector continuity.  相似文献   

11.
A case study of sub-basalt imaging in land region covered with basalt flows   总被引:2,自引:0,他引:2  
In this study, a set of 20 2D seismic lines, acquired over the Golan Heights basaltic plateau, was processed and analysed. Although the data were acquired and processed by standard techniques, in some cases good-quality seismic images were obtained under several hundred metres of basalts. We describe how the seismic characteristics of the top basalt layer were defined and show the effect of the numerous widespread volcanic sources on the quality of the final images. The new data reveal the first images of the sedimentary sequence under the basalt flows, and indicate that strands of the Dead Sea Transform extend into this area. The entire region was found to be very deformed. Several attractive traps for hydrocarbon exploration were also identified on the output sections.  相似文献   

12.
We present the chain of time‐reverse modeling, image space wavefield decomposition and several imaging conditions as a migration‐like algorithm called time‐reverse imaging. The algorithm locates subsurface sources in passive seismic data and diffractors in active data. We use elastic propagators to capitalize on the full waveforms available in multicomponent data, although an acoustic example is presented as well. For the elastic case, we perform wavefield decomposition in the image domain with spatial derivatives to calculate P and S potentials. To locate sources, the time axis is collapsed by extracting the zero‐lag of auto and cross‐correlations to return images in physical space. The impulse response of the algorithm is very dependent on acquisition geometry and needs to be evaluated with point sources before processing field data. Band‐limited data processed with these techniques image the radiation pattern of the source rather than just the location. We present several imaging conditions but we imagine others could be designed to investigate specific hypotheses concerning the nature of the source mechanism. We illustrate the flexible technique with synthetic 2D passive data examples and surface acquisition geometry specifically designed to investigate tremor type signals that are not easily identified or interpreted in the time domain.  相似文献   

13.
Data from a recently acquired sea-bed logging deep-water survey are analysed for resistive bodies at depths below mudline shallower than about 300 m. A model consistent with known methane hydrate properties is found to explain near-offset structures over an offset scale of a few hundred metres observed in the data. The lateral near-seabed resolution of the sea-bed logging method was determined to less than 100 m for source frequencies of up to 10 Hz. The importance of accurate hydrate maps to improve data processing is demonstrated by placing synthetic reservoirs below hydrates and observing their effects on reference model processing. The phase is shown to be less perturbed by shallow resistors than the amplitude, which is an important quality control of standard anomaly maps. While patchy shallow resistors can generally be mapped with simple normalized magnitude-versus-offset and phase-versus-offset difference analyses, large area distributions of hydrates over kilometres are hard to distinguish from deeper structures using controlled-source electromagnetic data only, short of conducting a full 3D inversion of a sufficiently large survey. Beyond, the study confirms the applicability of controlled-source electromagnetic techniques in general to map shallow resistive structures for drilling hazards and possible future exploration of methane hydrates as an energy source.  相似文献   

14.
Passive seismic has recently attracted a great deal of attention because non‐artificial source is used in subsurface imaging. The utilization of passive source is low cost compared with artificial‐source exploration. In general, constructing virtual shot gathers by using cross‐correlation is a preliminary step in passive seismic data processing, which provides the basis for applying conventional seismic processing methods. However, the subsurface structure is not uniformly illuminated by passive sources, which leads to that the ray path of passive seismic does not fit the hyperbolic hypothesis. Thereby, travel time is incorrect in the virtual shot gathers. Besides, the cross‐correlation results are contaminated by incoherent noise since the passive sources are always natural. Such noise is kinematically similar to seismic events and challenging to be attenuated, which will inevitably reduce the accuracy in the subsequent process. Although primary estimation for transient‐source seismic data has already been proposed, it is not feasible to noise‐source seismic data due to the incoherent noise. To overcome the above problems, we proposed to combine focal transform and local similarity into a highly integrated operator and then added it into the closed‐loop surface‐related multiple elimination based on the 3D L1‐norm sparse inversion framework. Results proved that the method was capable of reliably estimating noise‐free primaries and correcting travel time at far offsets for a foresaid virtual shot gathers in a simultaneous closed‐loop inversion manner.  相似文献   

15.
Full Tensor Gravity Gradiometry (FTG) data are routinely used in exploration programmes to evaluate and explore geological complexities hosting hydrocarbon and mineral resources. FTG data are typically used to map a host structure and locate target responses of interest using a myriad of imaging techniques. Identified anomalies of interest are then examined using 2D and 3D forward and inverse modelling methods for depth estimation. However, such methods tend to be time consuming and reliant on an independent constraint for clarification. This paper presents a semi‐automatic method to interpret FTG data using an adaptive tilt angle approach. The present method uses only the three vertical tensor components of the FTG data (Tzx, Tzy and Tzz) with a scale value that is related to the nature of the source (point anomaly or linear anomaly). With this adaptation, it is possible to estimate the location and depth of simple buried gravity sources such as point masses, line masses and vertical and horizontal thin sheets, provided that these sources exist in isolation and that the FTG data have been sufficiently filtered to minimize the influence of noise. Computation times are fast, producing plausible results of single solution depth estimates t hat relate directly to anomalies. For thick sheets, the method can resolve the thickness of these layers assuming the depth to the top is known from drilling or other independent geophysical data. We demonstrate the practical utility of the method using examples of FTG data acquired over the Vinton Salt Dome, Louisiana, USA and basalt flows in the Faeroe‐Shetland Basin, UK. A major benefit of the method is the ability to quickly construct depth maps. Such results are used to produce best estimate initial depth to source maps that can act as initial models for any detailed quantitative modelling exercises using 2D/3D forward/inverse modelling techniques.  相似文献   

16.
Use of low frequencies for sub-basalt imaging   总被引:5,自引:1,他引:5  
Many prospective passive ocean margins are covered by large areas of basalts. These basalts are often extremely heterogeneous and scatter the seismic energy of the conventional seismic reflection system so that it becomes difficult to obtain information on deeper reflectors. Since high frequencies are scattered more than low frequencies, we argue that the acquisition system for sub-basalt targets should be modified to emphasize the low frequencies, using much larger airguns, and towing the source and receivers at about 20 m depth. In the summer of 2001 we obtained seismic reflection data over basalt in the northeast Atlantic using a system modified to enhance the low-frequency energy. These new data show deep reflections that are not visible on lines shot in the same places with a conventional system.  相似文献   

17.
复杂地表低信噪比地震数据处理研究   总被引:7,自引:4,他引:3       下载免费PDF全文
焉耆盆地地质条件复杂,侏罗纪末燕山运动和第三纪喜山运动的挤压推覆作用在焉耆盆地南缘霍拉山前形成一系列推覆构造.由于地形起伏大,近地表结构复杂,采集的地震资料信噪比较低;以推覆构造为主体的地下地质复杂性给地震成像造成极大的困难.针对该复杂地区低信噪比地震资料,在偏移前资料预处理中,通过采取一系列旨在提高信噪比、重建反射信号的技术,为后续的复杂构造成像处理奠定基础.针对断裂交错的复杂推覆构造成像,采用增强高波数波场成像的半解析Fourier地震偏移方法,能很好地成像强速度对比下的陡倾角大断裂地质构造,有效突出推覆体构造的空间形态,改善推覆体下的成像效果.  相似文献   

18.
Cost reduction in seismic reconnaissance is an issue in geothermal exploration and can principally be achieved by sparse acquisition. To address the adherent decrease in signal/noise ratio, the common‐reflection‐surface method has been proposed. We reduced the data density of an existing 3D dataset and evaluated the results of common‐reflection‐surface processing using seismic attributes. The application of the common‐reflection‐surface method leads in all cases to an improvement of the signal/noise ratio. The most distinct improvement can be seen in the low fold regions. The improvement depends strongly on the midpoint aperture, and there is a tradeoff between reflector continuity and horizontal resolution. If small scale targets are to be imaged, a small aperture size is necessary, which may be far below the Fresnel zone for a specific reflector. The substantial reduction of the data density leads in our case to an irrecoverable information loss.  相似文献   

19.
Marine seismic vibrators are generally considered to be less intrusive than airguns from an environmental perspective. This is because they emit their energy spread out in time, rather than in a single, high-intensity pulse. There are also significant geophysical benefits associated with marine vibrators, and they stem from the ability to specify in detail the output acoustic waveform. The phase can be specified independently at each frequency. Such detailed control cannot be achieved with conventional airgun sources, where the phase can only be modified using simple overall time delays. The vibrator phase can be employed in several different ways: it can be applied to the overall source phase in a sequence so that it varies from one source point to the next; it can be applied to the individual vibrators within the source array so the source directivity is changed; it can be applied to the overall source phase of each source in a simultaneous source acquisition. Carefully designed phase sequences can attenuate the residual source noise, and this in turn allows extra source points to be interleaved between the conventional ones. For these extra source points, the relative phase of the vibrators within the array can be chosen to create a transverse gradient source, which illuminates the earth predominantly in directions out of the plane of the sail line without left/right ambiguity. If seismic vibrator data are acquired using interleaved conventional and transverse gradient sweeps, more information is collected per kilometre of vessel travel than is the case in conventional acquisition. This richer data acquisition leads to the possibility of acquiring all the necessary seismic data in a shorter time. Three-dimensional reconstruction techniques are used to recover the same image quality that would have been obtained using the conventional, more time-consuming acquisition. For a marine vibrator to be suitable for these techniques it must, in general terms, have ‘high fidelity’. The precise device specifications are defined through realistic end-to-end simulations of the physical systems and the processing. The specifications are somewhat more onerous than for a conventional vibrator, but they are achievable. A prototype vibrator that satisfies these requirements has been built. In a simulated case study of a three-dimensional deep-water ocean bottom node survey, the seismic data could have been acquired using marine vibrators in one third of the time that it would have taken using airguns.  相似文献   

20.
Estimation of Thomsen's anisotropic parameters is very important for accuratetime-to-depth conversion and depth migration data processing. Compared with othermethods, it is much easier and more reliable to estimate anisotropic parameters that arerequired for surface seismic depth imaging from vertical seismic profile (VSP) data, becausethe first arrivals of VSP data can be picked with much higher accuracy. In this study, wedeveloped a method for estimating Thomsen's P-wave anisotropic parameters in VTImedia using the first arrivals from walkaway VSP data. Model first-arrival travel times arecalculated on the basis of the near-offset normal moveout correction velocity in VTI mediaand ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropicparameters 0 and e are determined by minimizing the difference between the calculatedand observed travel times for the near and far offsets. Numerical forward modeling, usingthe proposed method indicates that errors between the estimated and measured anisotropicparameters are small. Using field data from an eight-azimuth walkaway VSP in TarimBasin, we estimated the parameters 0 and e and built an anisotropic depth-velocity modelfor prestack depth migration processing of surface 3D seismic data. The results showimprovement in imaging the carbonate reservoirs and minimizing the depth errors of thegeological targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号