首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Enstatite-rich meteorites include EH and EL chondrites, rare ungrouped enstatite chondrites, aubrites, a few metal-rich meteorites (possibly derived from the mantle of the aubrite parent body), various impact-melt breccias and impact-melt rocks, and a few samples that may be partial-melt residues ultimately derived from enstatite chondrites. Members of these sets of rocks exhibit a wide range of impact features including mineral-lattice deformation, whole-rock brecciation, petrofabrics, opaque veins, rare high-pressure phases, silicate darkening, silicate-rich melt veins and melt pockets, shock-produced diamonds, euhedral enstatite grains, nucleation of enstatite on relict grains and chondrules, low MnO in enstatite, high Mn in troilite and oldhamite, grains of keilite, abundant silica, euhedral graphite, euhedral sinoite, F-rich amphibole and mica, and impact-melt globules and spherules. No single meteorite possesses all of these features, although many possess several. Impacts can also cause bulk REE fractionations due to melting and loss of oldhamite (CaS) – the main REE carrier in enstatite meteorites. The Shallowater aubrite can be modeled as an impact-melt rock derived from a large cratering event on a porous enstatite chondritic asteroid; it may have been shock melted at depth, slowly cooled and then excavated and quenched. Mount Egerton may share a broadly similar shock and thermal history; it could be from the same parent body as Shallowater. Many aubrites contain large pyroxene grains that exhibit weak mosaic extinction, consistent with shock-stage S4; in contrast, small olivine grains in some of these same aubrites have sharp or undulose extinction, consistent with shock stage S1 to S2. Because elemental diffusion is much faster in olivine than pyroxene, it seems likely that these aubrites experienced mild post-shock annealing, perhaps due to relatively shallow burial after an energetic impact event. There are correlations among EH and EL chondrites between petrologic type and the degree of shock, consistent with the hypothesis that collisional heating is mainly responsible for enstatite-chondrite thermal metamorphism. Nevertheless, the apparent shock stages of EL6 and EH6 chondrites tend to be lower than EL3-5 and EH3-5 chondrites, suggesting that the type-6 enstatite chondrites (many of which possess impact-produced features) were shocked and annealed. The relatively young Ar–Ar ages of enstatite chondrites record heating events that occurred long after any 26Al that may have been present initially had decayed away. Impacts remain the only plausible heat source at these late dates. Some enstatite meteorites accreted to other celestial bodies: Hadley Rille (EH) was partly melted when it struck the Moon; Galim (b), also an EH chondrite, was shocked and partly oxidized when it accreted to the LL parent asteroid. EH, EL and aubrite-like clasts also occur in the polymict breccias Kaidun (a carbonaceous chondrite) and Almahata Sitta (an anomalous ureilite). The EH and EL clasts in Kaidun appear unshocked; some clasts in Almahata Sitta may have been extensively shocked on their parent bodies prior to being incorporated into the Almahata Sitta host.  相似文献   

2.
Literature data show that refractory-lithophile elements in most chondrite groups are unfractionated relative to CI chondrites; the principal exception is the EL-chondrite group whose observed falls (all of which are type 6) are depleted in Ca and light REE. In contrast, literature data and our new INAA data on EL3 PCA 91020, EL3 MAC 88136 and EL4 Grein 002 show that some replicates of these samples have nearly flat REE patterns (unlike those of EL6 chondrites); other replicates exhibit fractionated REE patterns similar to those of EL6 chondrites. Petrographic examination shows that many EL6 (and some EL3 and EL4) chondrites are impact-melt breccias or contain impact-melted portions. We suggest that the same impact processes that formed these breccias and produced melt are responsible for the observed bulk compositional fractionations in refractory-lithophile elements, i.e., EL6 chondrites were produced from initially unequilibrated EL3 material. When large amounts of impact heat were deposited, plagioclase and/or oldhamite (CaS) (the major REE carriers in enstatite chondrites) may have been melted and then transported appreciable (>10 cm) distances. EL6 chondrites represent the residuum that is depleted in REE (particularly in LREE) and Ca. Unlike the case for EL chondrites, our new INAA data on ALH 84170, EET 87746 and SAH 97096 (all EH3) show some scatter but are consistent with the EH group having uniform refractory-lithophile abundances.  相似文献   

3.
We report the results of rare earth elements (REEs) and U-Th inventory of individual minerals (oldhamite, enstatite and niningerite) in two of the most unequilibrated and primitive EH3 known so far, ALHA77295 and Sahara 97072. Under the highly reducing condition that prevailed during the formation of enstatite chondrites, REEs are mainly chalcophile and concentrated in oldhamite. The study is guided by detailed petrographic investigations of the individual minerals in chondrules, complex sulfide-metal clasts and enstatite-dominated matrices.We developed two textural parameters in order to resolve the evolution of oldhamite condensates and their residence in the solar gas prior to their accretion in the individual objects or in matrices and relate these textural features to the measured REE patterns of the individual oldhamite crystals. These textural parameters are the crystal habit of oldhamite grains (idiomorphic or anhedral) and their host assemblages. REE concentrations were measured by SIMS and LA-ICPMS.Oldhamite grains display REE enrichments (10-100 × CI). Four types of REE patterns are encountered in oldhamite in ALHA77295. In general the REE distributions cannot be assigned to a specific oldhamite-bearing assemblage. The most represented REE pattern is characterized by both slight to large positive Eu and Yb anomalies and is enriched in light REEs relative to heavy REEs. This pattern is present in 97% of oldhamite in Sahara 97072, suggesting a different source region in the reduced part of the nebula or different parental EH asteroids for the two EH3 chondrites. Different parental asteroids are also supported by MgS-FeS zoning profiles in niningerite grains adjacent to troilite revealing both normal and reverse zoning trends and different MnS contents. The observed homogeneity of REE distribution in oldhamite grains in Sahara 97072 is not related to the mild metamorphic event identified in this meteorite that caused breakdown of the major K- and Rb-bearing sulfide (djerfisherite).REE concentrations in enstatite range between 0.2 and 8 × CI. Hence, enstatite is an important REE host next to oldhamite. Most patterns are characterized by negative Eu and Yb anomalies. Niningerites are negligible contributors to bulk EH3 REE inventory. Average positive Eu and Yb anomalies observed in most oldhamite are complimentary to the negative ones in enstatite thus explaining the flat patterns of the bulk meteorites. The condensation calculations based on cosmic abundances predict that the first oldhamite condensates should have flat REE patterns with Eu and Yb depletions since Eu and Yb condense at lower temperature than other REE. However, this pattern is seen in enstatite. Our findings are at odds with the predicted negative Eu and Yb anomalies in oldhamite earliest condensates from a closed system in a reduced solar source. Our petrographic, mineral chemistry and REE abundances of oldhamite, enstatite and niningerite discards an origin of oldhamite by impact melting (Rubin et al., 2009).Our results do not support in first order the scenario of the incorporation of REE in the Earth’s core to explain 142Nd excess in terrestrial samples relative to chondrites because oldhamite is the major REE carrier phase and has super-chondritic Sm/Nd ratios.  相似文献   

4.
The enstatite chondrites formed under highly reducing (and/or sulfidizing) conditions as indicated by their mineral assemblages and compositions, which are sharply different from those of other chondrite groups. Enstatite is the major silicate mineral. Kamacite is Si-bearing and the enstatite chondrites contain a wide variety of monosulfide minerals that are not present in other chondrite groups. The unequilibrated enstatite chondrites are comprised of two groups (EH3 and EL3) and one anomalous member (LEW 87223), which can be distinguished by differences in their mineral assemblages and compositions. EH3 chondrites have >1.8 wt.% Si in their kamacite and contain the monosulfide niningerite (MgS), whereas EL3 chondrites have less than 1.4 wt.% Si in their kamacite and contain the monosulfide alabandite (MnS). The distinct mineralogies, compositions and textures of E3 chondrites make comparisons with ordinary chondrites (OCs) and carbonaceous chondrites (CCs) difficult, however, a range of recrystallization features in the E3s are observed, and some may be as primitive as type 3.1 OCs and CCs. Others, especially the EL3 chondrites, may have been considerably modified by impact processes and their primary textures disturbed. The chondrules in E3 chondrites, although texturally similar to type I pyroxene-rich chondrules, are sharply different from chondrules in other chondrite groups in containing Si-bearing metal, Ca- and Mg–Mn-rich sulfides and silica. This indicates formation in a reduced nebular environment separate from chondrules in other chondrites and possibly different precursor materials. Additionally the oxygen isotope compositions of E3 chondrules indicate formation from a unique oxygen reservoir. Although the abundance, size distribution, and secondary alteration minerals are not always identical, CAIs in E3 chondrites generally have textures, mineral assemblages and compositions similar to those in other groups. These observations indicates that CAIs in O, C and E chondrites all formed in the reservoir under similar conditions, and were redistributed to the different chondrite accretion zones, where the secondary alteration took place. Thus, chondrule formation was a local process for each particular chondrite group, but all CAIs may have formed in the similar nebular environment. Lack of evidence of water (hydrous minerals), and oxygen isotope compositions similar to Earth and Moon suggest formation of the E chondrites in the inner solar system and make them prime candidates as building blocks for the inner planets.  相似文献   

5.
We report instrumental neutron activation analysis determinations of 19 major, minor and trace elements in three enstatite chondrites. Based on these, and literature data on the bulk and mineral composition of enstatite chondrites, we discuss the history of the type 3 or unequilibrated enstatite chondrites, and their relationship with the other enstatite chondrites. The type 3 enstatite chondrites have E chondrite lithophile element abundances and their siderophile element abundances place them with the EH chondrites, well resolved from the EL chondrites. Moderately volatile chalcophile elements are at the low end of the EH range and Cr appears to be intermediate between EH and EL. We suggest that the type 3 enstatite chondrites are EH chondrites which have suffered small depletions of certain chalcophile elements through the loss of shock-produced sulfurous liquids. The oxygen isotope differences between type 3 and other enstatite chondrites is consistent with equilibration with the nebula gas ~30° higher than the others, or with the loss of a plagioclase-rich liquid. The mineral chemistry of the type 3 chondrites is consistent with either low temperature equilibration, or, in some instances, with shock effects.  相似文献   

6.
Instrumental neutron activation analysis(INAA) of 14 single oldhamite grains separated from the Qingzhen chondrite (EH3) for refractory(La,Ce,Sm ,Eu,Yb,Lu,Ca,Sc,Hf, and Th),volatile (Na,Cr,Zn,Se,Br,etc.)and siderophile elements (Fe,Ni,Co,Ir,Au ,and As) revealed that oldhamite is highly rich in refractory elements.The mineral serves as the principal carrier of REE and contains about 80% of the REEs in the Qingzhen enstatite chondrite .Furthermore, the large enrichment of LREE relative to HREE is noticed in oldhamite from the Qingzhen .In general, the oldhamite from metal-sulfide assemblages is richer in REE than that from the matrix,i.e.,the earlier the oldhamite grains condensed, the richer they are in REE. Meanwhile.oldhamite is also rich in vol-atile elements such as Se,Br, etc.In terms of the distribution of trace elements in oldhamitc from the Qingzhen ,the chondrite is srggested to have resulted from high-temperature condensation of solar nebula.  相似文献   

7.
Enstatite meteorites include the undifferentiated enstatite chondrites and the differentiated enstatite achondrites (aubrites). They are the most reduced group of all meteorites. The oxygen isotope compositions of both enstatite chondrites and aubrites plot along the terrestrial mass fractionation line, which suggests some genetic links between these meteorites and the Earth as well.For this study, we measured the Zn isotopic composition of 25 samples from the following groups: aubrites (main group and Shallowater), EL chondrites, EH chondrites and Happy Canyon (impact-melt breccia). We also analyzed the Zn isotopic composition and elemental abundance in separated phases (metal, silicates, and sulfides) of the EH4, EL3, and EL6 chondrites. The different groups of meteorites are isotopically distinct and give the following values (‰): aubrite main group (−7.08 < δ66Zn < −0.37); EH3 chondrites (0.15 < δ66Zn < 0.31); EH4 chondrites (0.15 < δ66Zn < 0.27); EH5 chondrites (δ66Zn = 0.27 ± 0.09; n = 1); EL3 chondrites (0.01 < δ66Zn < 0.63); the Shallowater aubrite (1.48 < δ66Zn < 2.36); EL6 chondrites (2.26 < δ66Zn < 7.35); and the impact-melt enstatite chondrite Happy Canyon (δ66Zn = 0.37).The aubrite Peña Blanca Spring (δ66Zn = −7.04‰) and the EL6 North West Forrest (δ66Zn = 7.35‰) are the isotopically lightest and heaviest samples, respectively, known so far in the Solar System. In comparison, the range of Zn isotopic composition of chondrites and terrestrial samples (−1.5 < δ66Zn < 1‰) is much smaller ( [Luck et al., 2005] and [Herzog et al., 2009]).EH and EL3 chondrites have the same Zn isotopic composition as the Earth, which is another example of the isotopic similarity between Earth and enstatite chondrites. The Zn isotopic composition and abundance strongly support that the origin of the volatile element depletion between EL3 and EL6 chondrites is due to volatilization, probably during thermal metamorphism. Aubrites show strong elemental depletion in Zn compared to both EH and EL chondrites and they are enriched in light isotopes (δ66Zn down to −7.04‰). This is the opposite of what would be expected if Zn elemental depletion was due to evaporation, assuming the aubrites started with an enstatite chondrite-like Zn isotopic composition. Evaporation is therefore not responsible for volatile loss from aubrites. On Earth, Zn isotopes fractionate very little during igneous processes, while differentiated meteorites show only minimal Zn isotopic variability. It is therefore very unlikely that igneous processes can account for the large isotopic fractionation of Zn in aubrites. Condensation of an isotopically light vapor best explains Zn depletion and isotopically light Zn in these puzzling rocks. Mass balance suggests that this isotopically light vapor carries Zn lost by the EL6 parent body during thermal metamorphism and that aubrites evolved from an EL6-like parent body. Finally, Zn isotopes suggest that Shallowater and aubrites originate from distinct parent bodies.  相似文献   

8.
The aubrites are nearly monomineralic enstatite pyroxenites, consisting mostly of nearly FeO-free enstatite, with minor albitic plagioclase, nearly FeO-free diopside and forsterite, metallic Fe,Ni, troilite, and a host of rare accessory minerals, many unknown from Earth, that formed under highly reducing conditions. As a result, many of the normally lithophile elements such as Ti, Cr, Mn, Na, etc. behave partly as chalcophiles (i.e., occur in sulfides), and Si is partly siderophile and occurs in metallic Fe,Ni. Aubrites must therefore have formed in a very unique part of the solar nebula, possibly within 1 AU of the Sun. While of the 27 aubrites, 15 are fragmental breccias, 6 are regolith breccias, and 6 are described as non-brecciated, their ingredients are clearly of igneous origin and formed by melting and fractional crystallization, possibly of a magma ocean. This is indicated by the occurrence of a variety of lithic clasts of igneous origin, and by the REE and other trace element distributions. Their highly reduced nature and their oxygen isotopic compositions suggest close kinship to the enstatite chondrites. However, they did not form from known EH or EL chondrites on their parent bodies. Rather, they formed from enstatite chondrite-like material on at least two separate parent bodies, the Shallowater parent body and, for all other aubrites, on the aubrite parent body. Visible and near-infrared reflectance spetra of asteroids suggest that the aubrite parent bodies may be asteroids of the E-type and perhaps the E(II) sub-class, such as 3103 Eger and 2867 Steins (the target of the Rosetta Mission). If aubrites formed by the melting and fractional crystallization of enstatite chondrite-like parent lithologies, which should have contained ~10 vol% plagioclase, then meteorites of enstatite-plagioclase basaltic composition should exist, which is not the case. These early basaltic melts may have been removed from the aubrite parent body by explosive pyroclastic volcanism, and these small pyroclasts would have been destroyed in space long ago. Age dates suggest that the aubrites formed very early in the history of the solar system, within a few Ma of CAI formation, and that the heat sources for heating and melting of their parent bodies were, most likely, short-lived radionuclides such as 26Al and, perhaps, 60Fe. Finally, attention has been drawn to the surface composition of Mercury of low bulk FeO and of nearly FeO-free enstatite, perhaps with plagioclase, diopside and sulfide. While known aubrites clearly did not originate from Mercury, recent calculations suggest that several percent of high-speed ejecta from Mercury reach Earth. This is only factors of 2–3 less than typical launches from Mars and, since there are now 53 Martian meteorites in our collections, meteoriticists should be alert to the potential discovery of a genuine meteorite from Mercury which, superficially, should resemble aubrites. However, recent results from the Neutron Spectrometer of the Messenger Flyby of Mercury have been interpreted to suggest that the planet’s surface may, in fact, contain abundant Fe–Ti-oxides and, if true, a meteorite from Mercury should not resemble any currently known meteorite type.  相似文献   

9.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   

10.
清镇陨石(EH3)硫镁矿微量元素化学特征   总被引:1,自引:0,他引:1  
陈永亨佩里卡  E 《矿物学报》1993,13(3):197-203
本文应用电子探针和中子活化分析方法详细研究了清镇陨石(EH 3)中硫镁矿的化学组成和微量元素分布、硫镁矿携带了部分HREE、高度富集钪等难熔亲石元素,论证了该矿物的高温成因,REE丰度可能与陨硫钙石互补。该矿物含有钠-硒组分,可能是顽火辉石陨石独有的组分。铬归一化的钠-钴(原子比)相关关系具有CI一致的趋势,表明其母体来自太阳组成的气体星云。  相似文献   

11.
Mineralogic study of black inclusions in the Cumberland Falls enstatite achondrite revealed that they constitute a highly unequilibrated chondritic suite distinct from other chondrite groups. This highly shocked suite, the forsterite (F) chondrites, exhibits mineralogic trends apparently produced during primary nebular condensation and accretion over a broad redox range. We analyzed these samples and possibly related meteorites for Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U and Zn, trace elements known to yield important genetic information. The results demonstrate the compositional coherence and distinctiveness of the F chondrite suite relative to other chondrites. The Antarctic aubrite, ALH A78113, may include more F chondrite material. Trace element contents do not vary with mineral compositions hence do not reflect redox variations during formation of F chondrite parental matter. Trace element mobilization—during secondary heating episodes in the F chondrite parent or during its disruptive collision with the enstatite meteorite parent body—is not detectable. Chemical trends in F chondrites apparently reflect primary nebular processes. Cosmochemical fractionation of lithophiles from siderophiles and chalcophiles occurred at moderately high temperatures, certainly higher than those existing during formation of primitive carbonaceous, enstatite and ordinary chondrites of petrologic type ≤3.  相似文献   

12.
Oldhamite is a major Th and U bearing phase in the enstatite meteorites. Oldhamite from E-6 chondrites has mean Th and U abundances of 1550 ± 80 ppb Th and 410 ± 20 ppb U, with ThU = 3.8 ± .2. With the exception of ferroan alabandite which contains 25 ± 1 ppb U, no other Th or U enriched phases were located in the E-6 chondrites, and nearly all of the total rock Th and U can be accounted for by oldhamite. In Khairpur (E6), excess fossil fission tracks were observed in enstatite grains in contact with oldhamite which indicates the presence of 244Pu in oldhamite. Oldhamite from St. Mark's (E5) and Abee (E4) also shows actinide enrichments but at levels about half the E-6 results. Niningerite in Abee contains 45 ± 5 ppb U and due to its high reported modal abundance is an important U reservoir in Abee. The U content of oldhamite from the aubrite Peña Blanca Spring is 1920 ± 100 ppb. All ThU values measured in this study cluster tightly around a value of 4 which indicates a lack of ThU fractionation in both oldhamite and in the enstatite meteorites, themselves. This lack of fractionation, along with the presence of 244Pu in oldhamite and reported rare earth enrichments also in oldhamite, suggests that the enstatite chondrites may be well-suited for PuU chronology and for providing the initial PuU value in the early solar system.  相似文献   

13.
The matrices of sixteen unequilibrated ordinary chondrites (all witnessed falls) were studied microscopically in transmitted and reflected light and analyzed by electron microprobe. Selected specimens were also studied by scanning electron microscopy. These studies indicate that the fine-grained, opaque, silicate matrix of type 3 unequilibrated chondrites is compositionally, mineralogically and texturally distinct from the chondrules and chondrule fragments and may be the low temperature condensate proposed by Larimer and Anders (1967, 1970). Examination of the matrices of unequilibrated chondrites also shows that each meteorite has been metamorphosed, with the alteration ranging in intensity from quite mild, where the matrix has been only slightly altered, to a more severe metamorphism that has completely recrystallized the opaque matrix. Most of the metamorphic changes in the matrix occurred without significant effects on the compositions or textures of the chondrules. The metamorphic alteration probably resulted from a combination of processes including thermal metamorphism and the passage of shock waves. The present appearance of each unequilibrated chondrite is a result of the particular temperature and pressure conditions under which it and its components formed, plus the subsequent metamorphic alteration it experienced.  相似文献   

14.
Rare-earth abundances in chondritic meteorites   总被引:1,自引:0,他引:1  
Fifteen chondrites, including eight carbonaceous chondrites, have been analyzed for rare earth element (REE) abundances by isotope dilution. These analyses complement and extend earlier isotope dilution REE determinations in chondrites, performed in other laboratories, so that coverage of major chondrite classes is now complete. An examination of this body of precise and comparable REE data from individual chondrites reveals that only a small proportion of the analyses have flat, unfractionated REE patterns within experimental error. A statistical procedure is used to derive revised chondritic abundances of REE by selection of unfractionated patterns. A number of the remaining analyses show Eu anomalies and fractionated patterns consistent with magmatic fractionation as encountered in the products of planetary differentiation. However, many patterns exhibit features not readily explicable by known magmatic processes; in particular, positive Ce anomalies are often encountered. Abundance anomalies can be quantitatively determined by the use of a least-squares curve fitting procedure. The wide variety of anomalous patterns and the uncertainties in model parameters preclude detailed modeling of the origin of anomalies, but it is probable that at least some arise from fractional condensation in the solar nebula, as has been demonstrated for Allende inclusions. Elemental abundance anomalies are found in all major chondrite classes. If these anomalies are ignored, the range and nature of variation within chondrite classes are consistent with a parent body model, in which solid-liquid or solid-solid equilibria induce variations from an unfractionated bulk composition. Absolute abundances in the H, L and LL parent bodies are almost twice those of the E parent body.The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibration or were introduced at a late stage of chondrite formation. Large scale segregation of gas and condensate is also implied, and raises the possibility of bulk variations in REE abundances between planetary bodies.  相似文献   

15.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size.  相似文献   

16.
J.B. Dawson   《Lithos》2004,77(1-4):553-569
Porphyroclastic enstatite in a garnet lherzolite xenolith from the Monastery Mine kimberlite, South Africa, has exsolved pyrope garnet, Cr-diopside and Al-chromite, and the specimen is interpreted as representing a transition from fertile harzburgite, (containing high Ca-Al-Cr enstatite) to granular garnet lherzolite. Although the exsolved phases occur in morphologically different forms (fine and coarse lamellae; equant, ripened grains), indicating textural disequilibrium, the exsolved grains are very constant in composition, indicating chemical equilibrium. Theoretically, the exsolution could have been due to a fall in temperature, but the close association of exsolution and deformation of the host enstatite suggests that exsolution was also aided by straining of the enstatite lattice. The phase compositions can be broadly matched with those in other mantle peridotites, except that all phases are characterised by a virtual absence of Ti. In the garnet and diopside Ti, Co, Zr and most of the REE are lower than in published analyses of garnet and diopside in both granular and sheared garnet lherzolites from Southern African kimberlites, and diopside/garnet partitioning for Sr and the REE is higher. Comparison with the trace element chemistry of an enstatite from a fertile harzburgite indicates that, except for Nb, the trace element content and distribution found in the Monastery phases could arise by isochemical exsolution from such an enstatite. On the assumption that (a) the Monastery specimen represents a transition from harzburgite to garnet lherzolite, and (b) many garnet lherzolites are of exsolution origin (as suggested by their modal compositions), the inference is that most garnet lherzolites, and not just the sheared variety, have been subject to varying degrees of Ti, Zr, Sr and REE metasomatism.  相似文献   

17.
The thermal history of a series of EH3 and EL3 chondrites has been investigated by studying the degree of structural order of the organic matter (OM) located and characterized in matrix areas by Raman micro-spectroscopy. By comparison with unequilibrated ordinary chondrites (UOCs) and CO and CV carbonaceous chondrites, the following petrologic types have been assigned to various E chondrites: Sahara 97096 and Allan Hills 84206: 3.1-3.4; Allan Hills 85170 and Parsa: 3.5; Allan Hills 85119: 3.7; Qingzhen, MacAlpine Hills 88136 and MacAlpine Hills 88184: 3.6-3.7. The petrologic type of Qingzhen is consistent with the abundance of the P3 noble gas component, a sensitive tracer of the grade of thermal metamorphism. The petrologic types are qualitatively consistent with the abundance of fine-grained matrix for the whole series. No significant effects of shock processes on the structure of OM were observed. However such processes certainly compete with thermal metamorphism and the possibility of an effect cannot be fully discarded, in particular in the less metamorphosed objects. The OM precursors accreted by the EH3 and EL3 parent bodies appear to be fairly similar to those of UOCs and CO and CV carbonaceous chondrites. Raman data however show some slight structural differences that could be partly accounted for by shock processes. The metamorphic history of EH3 and EL3 chondrites has often been described as complex, in particular regarding the combined action of shock and thermal metamorphism. Because OM maturity is mostly controlled by the temperature of peak metamorphism, it is possible to distinguish between the contributions of long duration thermal processes and that of shock processes. Comparison of the petrologic types with the closure temperatures previously derived from opaque mineral assemblages has revealed that the thermal history of EH3 and EL3 chondrites is consistent with a simple asteroidal onion shell model. Thermal metamorphism in enstatite chondrites appears to be fairly similar to that which takes place in other chondrite classes. The complex features recorded by mineralogy and petrology and widely reported in the literature appear to be mostly controlled by shock processes.  相似文献   

18.
我国南极陨石研究与展望   总被引:2,自引:0,他引:2  
继1998~2000年我国第15、16次南极科考队在南极格罗夫山发现32块陨石之后,2002~2003年第19次科考队成立了以回收陨石为中心任务的格罗夫山综合考察分队,在同一地区成功回收4448块陨石。我国的南极陨石回收工作不但实现了零的突破,而且成为继日本和美国之后拥有南极陨石数量最多的国家之一。通过对第15、16次队回收的32块陨石以及第19次队4448块陨石中的38块代表性样品的化学一岩石类型划分工作,除平衡型普通球粒陨石外,发现了2块火星陨石、2块橄辉无球粒陨石、6块非平衡L3型陨石、4块碳质球粒陨石和1块非平衡型顽辉石球粒陨石等特殊类型陨石。本文主要介绍了南极陨石的回收和研究进展,以及我国在南极格罗夫山回收陨石的情况和已取得的初步研究成果。同时对我国今后的陨石回收与研究工作提出初步设想。  相似文献   

19.
We have analyzed the Y/Ho-ratios in bulk chondrites, chondrules and four Ca- and Al-rich inclusions (CAIs) from carbonaceous and unequilibrated ordinary and enstatite chondrites (EC) by laser ablation inductively coupled mass spectrometry (LA-ICPMS). We demonstrate that bulk rock sample preparation by containerless melting is a suitable method for preparation of bulk rock samples for high-precision LA-ICPMS. Bulk chondrites have variable Y/Ho-ratios. Carbonaceous chondrites (CI1, CM2, CV3, and CK4) have a common Y/Ho-ratio (25.94 ± 0.08, 2σ) that is regarded as the solar system Y/Ho-ratio. The Y/Ho-ratio increases from carbonaceous, through ordinary (LL, L, H) to enstatite chondrites (EL6), which show the highest Y/Ho-ratio of 27.25. We discuss the result with respect to the origin of fractionation of Re and Os between chondrite groups. Within analytical error, Y and Ho show a good correlation in OC and CV3 chondrules and define an Y/Ho-ratio of 26.22 ± 0.40 (2σ). Y/Ho-fractionation in Ca- and Al-rich inclusions is related to differences in volatility. The bulk silicate Earth is suggested to have a solar Y/Ho-ratio and links the Earth with carbonaceous chondrites. Y/Ho variations in primitive and differentiated terrestrial igneous rocks are discussed in framework of incompatibility of Y and Ho during partial melting. Applicability of Y/Ho as tracer for or against a sedimentary origin of the putative host rock of the Earth’s oldest traces of life from the island of Akilia is briefly discussed.  相似文献   

20.
Sixty-eight refractory inclusions and fragments were found in two polished thin sections of the Sahara 97159 EH3 chondrite, indicative of the highest abundance of refractory inclusions (22/cm2, or 0.06 vol.%) in enstatite chondrites studied to date. All of the inclusions are intensely altered, mainly producing feldspathoids and albite, CaO depletion and minor Ti-rich compounds, such as Ti-sulfides. The alteration assemblages and FeO-poor spinel suggest that the reactions took place under reducing and SiO2-rich conditions. This is consistent with the redox state of the host enstatite chondrite. The presence of Ti sulfides and low FeO alteration phases distinguishes alteration of E chondrite refractory inclusions from that of carbonaceous and ordinary chondrites.Most of the inclusions are referred to as Type A-like (35) and spinel-rich (26), respectively. Assuming melilite has been altered, these inclusions could be analogues of individual concentrically zoned objects of fluffy melilite-spinel-rich (Type A) and spinel-pyroxene-rich inclusions from carbonaceous chondrites such as the Ningqiang (CV anomalous) and Y 81020 (CO3) chondrites. Two inclusions consist mainly of Ca-pyroxene, fine-grained alteration products (feldspathoids and albite) and spinel. They are probably altered fragments of Ca-pyroxene-plagioclase-rich (Type C) inclusions, assuming all plagioclase has been altered to produce the fine-grained groundmass. Five other inclusions are hibonite and/or corundum bearing, similar to those reported in carbonaceous chondrites. Abundance ratios of various types of the inclusions from Sahara 97159 are similar to those from Ningqiang and Y 81020.Most of the observations, including mineral assemblages, mineral chemistry, texture, bulk compositions, O isotopic compositions and REE patterns, of the Sahara inclusions suggest a common reservoir of refractory inclusions in enstatite, ordinary and carbonaceous chondrites. The apparent differences, such as absence of melilite and anorthite, rare Wark-Lovering rim and small size, can be explained by intense alteration due to large change of postformation environment of these inclusions, size sorting and collision during transfer. Hence, these differences are not inconsistent with the common reservoir model. Refractory inclusions in non-carbonaceous chondrites may put additional constraints on origins of refractory inclusions, and provide hints for a spatial relationship of their host meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号