首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interhemispheric Linkage of Paleoclimate During the Last Glaciation   总被引:4,自引:0,他引:4  
Combined glacial geologic and palynologic data from the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé in middle latitudes (40°35’–42°25’S) of the Southern Hemisphere Andes suggest (1) that full-glacial or near-full-glacial climate conditions persisted from about 29,400 to 14,550 14C yr BP in late Llanquihue time, (2) that within this late Llanquihue interval mean summer temperature was depressed 6°–8°C compared to modern values during major glacier advances into the outer moraine belt at 29,400, 26,760, 22,295–22,570, and 14,550–14,805 14C yr BP , (3) that summer temperature depression was as great during early Llanquihue as during late Llanquihue time, (4) that climate deteriorated from warmer conditions during the early part to colder conditions during the later part of middle Llanquihue time, (5) that superimposed on long-term climate deterioration are Gramineae peaks on Isla Grande de Chiloé that represent cooling at 44,520–47,110 14C yr BP (T-11), 32,105–35,764 14C yr BP (T-9), 24,895–26,019 14C yr BP (T-7), 21,430–22,774 14C yr BP (T-5), and 13,040–15,200 14C yr BP (T-3), (6) that the initial phase of the glacial/interglacial transition of the last termination involved at least two major steps, one beginning at 14,600 14C yr BP and another at 12,700–13,000 14 C yr BP , and (7) that a late-glacial climate reversal of ≥2–3° C set in close to 12,200 14C yr BP , after an interval of near-interglacial warmth, and continued into Younger Dryas time. The late-glacial climate signal from the southern Chilean Lake District ties into that from proglacial Lago Mascardi in the nearby Argentine Andes, which shows rapid ice recession peaking at 12,400 14C yr BP , followed by a reversal of trend that culminated in Younger-Dryas-age glacier readvance at 11,400–10,200 14C yr BP . Many full- and late-glacial climate shifts in the southern Lake District match those from New Zealand at nearly the same Southern Hemisphere middle latitudes. At the last glacial maximum (LGM), snowline lowering relative to present-day values was nearly the same in the Southern Alps (875 m) and the Chilean Andes (1000 m). Particularly noteworthy are the new Younger-Dryas-age exposure dates of the Lake Misery moraines in Arthur's Pass in the Southern Alps. Moreover, pollen records from the Waikato lowlands on North Island show that a major vegetation shift at close to 14,700 14C yr BP marked the beginning of the last glacial/interglacial transition (Newnham et al. 1989). The synchronous and nearly uniform lowering of snowlines in Southern Hemisphere middle-latitude mountains compared with Northern Hemisphere values suggests global cooling of about the same magnitude in both hemispheres at the LGM. When compared with paleoclimate records from the North Atlantic region, the middle-latitude Southern Hemisphere terrestrial data imply interhemispheric symmetry of the structure and timing of the last glacial/interglacial transition. In both regions atmospheric warming pulses are implicated near the beginning of Oldest Dryas time (~14,600 14C yr BP) and near the Oldest Dryas/Bölling transition (~12,700–13,000 14 C yr BP ). The second of these warming pulses was coincident with resumption of North Atlantic thermohaline circulation similar to that of the modern mode, with strong formation of Lower North Atlantic Deep Water in the Nordic Seas. In both regions, the maximum Bölling-age warmth was achieved at 12,200–12,500 14 C yr BP , and was followed by a reversal in climate trend. In the North Atlantic region, and possibly in middle latitudes of the Southern Hemisphere, this reversal culminated in a Younger-Dryas-age cold pulse. Although changes in ocean circulation can redistribute heat between the hemispheres, they cannot alone account either for the synchronous planetary cooling of the LGM or for the synchronous interhemispheric warming steps of the abrupt glacial-to-interglacial transition. Instead, the dominant interhemispheric climate linkage must feature a global atmospheric signal. The most likely source of this signal is a change in the greenhouse content of the atmosphere. We speculate that the Oldest Dryas warming pulse originated from an increase in atmospheric water-vapor production by half-precession forcing in the tropics. The major thermohaline switch near the Oldest Dryas/Bölling transition then couldhave triggered another increase in tropical water-vapor production to near-interglacial values.  相似文献   

2.
A pollen record from Puyehue area (40°S; 72°W) in the southern Lake District, Chile, indicates that prior to 13,410 14C yr BP (ca. 16,500–15,200 cal yr BP), cold resistant and hygrophilous vegetation, particularly Nothofagus forest and myricaceous vegetation, covered the area. From ca. 15,000 cal yr BP onward, the forest became increasingly dense. Between 10,010 and 7450 14C yr BP (ca. 11,000–8000 cal yr BP), the expansion of Nothofagus obliqua and the spread of grasses suggests the climate became warmer and semi-arid. Lowland deciduous forest (Nothofagus obliqua, Aextoxicon punctatum, Laurelia sempervirens) and Valdivian rainforest (Nothofagus dombeyi, Eucryphia cordifolia, Caldcluvia paniculata, Aextoxicon punctatum, Laureliopsis philippiana) were abundant. During the next two thousand years, stable warm climatic conditions prevailed, and the diversity of the vegetation increased. From 5760 to 1040 14C yr BP (ca. 6500–900 cal yr BP), the North Patagonian rainforest expanded. The presence of Pilgerodendron/Fitzroya, together with Nothofagus forest, suggests that humid conditions prevailed. During the last millennium, human impact intensified and regional vegetation was disturbed, particularly the lowland deciduous forest and Valdivian rainforest. North-Patagonian and subantartic taxa, such as Podocarpus nubigena, Pilgerodendron/Fitzroya, Nothofagus dombeyi type, Austrocedrus chilensis and Drimys winteri, occupied the low and high-altitude parts of the Cordillera. Five hundred years ago, shrub and grasses expanded in the Nothofagus forest, suggesting that forest became more open under cool–cold, and humid climatic conditions. These conditions prevail to the present day. This is the fourth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

3.
Two cores from Trout Lake, northern Yukon, yielded quantitative estimates of summer air temperatures using fossil midge larvae. Warming began around 14,400?cal?yr BP, with inferred mean July air temperatures reaching values warmer than present by 12,800?cal?yr BP. A 1?°C cooling from 12,200 to 11,200?cal?yr BP closely corresponds with the Younger Dryas chronozone. A broad temperature maximum occurred between 10,800 and 9,800?cal?yr BP, with mean July air temperature about 2.2?°C warmer than present. This represents an early Holocene thermal maximum and coincides with increased organic content of the sediment. Both the shallow- and deep-water cores show similar temperature trends for their overlapping periods. The inferred rise in mean July air temperature at 14,200?cal?yr BP coincides with a shift in vegetation from an herb- to shrub-dominated landscape. In contrast, the increase in Alnus pollen at 6,400?cal?yr BP does not coincide with a change in temperature, but may be a response to a rise in precipitation.  相似文献   

4.
Analysis of midge remains in late-Quaternary sediment, recovered from a lake situated north of treeline in northeast Siberia, indicates the occurrence of notable climatic fluctuations during the last 12 ka. The onset of late-glacial warming was disrupted by a marked cooling event – possibly correlative with the Younger Dryas – that occurred between 11,000 and 10,000 yr BP. Increases in the relative abundance of taxa typically found in tundra lakes, such as Hydrobaenus/Oliveridia and Parakiefferiella nigra, and the concurrent decrease in temperate taxa, such as Microtendipes and Corynocera ambigua, suggest climatic deterioration occurred during this interval. At approximately 10,000 yr BP there was a large increase in temperate taxa such as Microtendipes and C. ambigua, and a decline of essentially all cold-water taxa. This suggests that climate was warmer than present since the modern distribution of both Microtendipes and C. ambigua is limited to forested sites in this region. This warm interval lasted until approximately 6000 yr BP when there was a precipitous decline in temperate chironomid taxa and an increase in cold-water chironomid taxa, such as Paracladius, Hydrobaenus/Oliveridia, Abiskomyia, and Parakiefferiella nigra. This cooling continued through the late-Holocene and the modern tundra chironomid assemblage developed by approximately 1400 yr BP.  相似文献   

5.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

6.
Fossil Trichoptera (caddisfly) remains have been identified and quantitatively recorded in the late-glacial and early-Holocene sediments from Kråkenes Lake, western Norway. The sediment sequence was deposited between 12,300 and 8850 14C BP, covering the Allerød, Younger Dryas, and early-Holocene periods. The first Trichoptera were recorded at 12,000 14C BP, and during the Allerod a diverse assemblage of Limnephilidae taxa developed in the lake. By about 11,400 14C BP the relatively thermophilous Polycentropus flavomaculatus and Limnephilus rhombicus were present, suggesting that the summer water temperature was at least 17 °C. This temperature fell by 5-8 °C at the start of the Younger Dryas, and the thermophilous taxa were replaced within 20-40 14C yrs by Apatania spp., including the arctic-alpine A. zonella, suggesting a maximum summer water temperature of 10-12 °C. The Trichoptera assemblage was impoverished in numbers and in diversity over the next 200 yrs as the severe conditions of the Younger Dryas developed. As soon as temperatures rose and glacial meltwater and silt input ended about 700 14C yrs later, the resident Apatania assemblage expanded immediately, within 10 yrs. About 130 yrs later, thermophilous taxa replaced Apatania, and a much more diverse assemblage than in the Allerod occupied the varied habitats made available by the development of the Holocene lake ecosystem. The 130 yr delay may have been caused by a gradual temperature increase crossing a critical threshold, or by the time taken for thermophilous taxa to migrate from their Younger Dryas refugia.  相似文献   

7.
Glacial geomorphologic features composed of (or cut into) Llanquihue drift delineate former Andean piedmont glaciers in the region of the southern Chilean Lake District, Seno Reloncav', Golfo de Ancud, and northern Golfo Corcovado during the last glaciation. These landforms include extensive moraine belts, main and subsidiary outwash plains, kame terraces, and meltwater spillways. Numerous radiocarbon dates document Andean ice advances into the moraine belts during the last glacial maximum (LGM) at 29,363–29,385 14C yr BP , 26,797 14C yr BP , 22,295–22,570 14C yr BP , and 14,805–14,869 14C yr BP . Advances may also have culminated at close to 21,000 14C yr BP , shortly before 17,800 14C yr BP , and shortly before 15,730 14C yr BP . The maximum at 22,295–22,567 14C yr BP was probably the most extensive of the LGM in the northern part of the field area, whereas that at 14,805–14,869 14C yr BP was the most extensive in the southern part. Snowline depression during these maxima was about 1000 m. Andean piedmont glaciers did not advance into the outer Llanquihue moraine belts during the portion of middle Llanquihue time between 29,385 14C yr BP and more than 39,660 14C yr BP . In the southern part of the field area, the Golfo de Ancud lobe, as well as the Golfo Corcovado lobe, achieved a maximum at the outermost Llanquihue moraine prior to 49,892 14C yr BP . Pollen analysis of the Taiquemmire, which is located on this moraine, suggests that the old Llanquihue advance probably corresponds to the time of marine isotope stage 4. The implication is that the Andean snowline was then depressed as much as during the LGM. A Llanquihue-age glacier expansion into the outer moraine belts also occurred more than about 40,000 14C yr BP for the Lago Llanquihue piedmont glacier.  相似文献   

8.
Subantarctic Parkland and Subantarctic–North Patagonian Evergreen Forest, embracing >40,000 14 C years of middle and late Llanquihue glaciation, are reconstructed from pollen contained in multiple interdrift deposits and cores of lake sediments. The subantarctic plant communities at low elevations have since been replaced by temperate Valdivian Evergreen Forest. Data in support of the vegetation reconstruction derive from close-interval sampling (>1400 pollen analysed stratigraphic levels) and high-resolution chronology (>200 AMS and conventional radiocarbon-dated horizons). Pollen sequences are from 15 sites, eight of which are exposures and seven mires, located in relation to lobes of piedmont glaciers that occupied Lago Llanquihue, Seno Reloncav', Golfo de Ancud, and the east-central sector of Isla Grande de Chiloí at the northern limit of the Golfo Corcovado lobe. Recurring episodes of grass maxima representing Subantarctic Parkland, when grass and scrub became widespread among patches of southern beech (Nothofagus), bear a relationship to glacial advances. The implication of the maxima, prominent with advances at 22,400 and 14,800 14C yr BP during late Llanquihue glaciation in marine oxygen-isotope Stage 2, is of successive intervals of cold climate with summer temperatures estimated at 6–8°C below the modern mean. The earliest recorded maximum at >50,000 14C yr BP is possibly during late Stage 4. At the time of middle Llanquihue glaciation in Stage 3, cool, humid interstades on Isla Grande de Chiloé with Subantarctic Evergreen Forest, which under progressive cooling after 47,000 14C yr BP was increasingly replaced by parkland. During stepwise deglaciation, when transitional beech woodland communities supplanting parkland became diversified by formation of thermophilous North Patagonian Evergreen Forest, warming in the order of 5–6°C was abrupt after 14,000 14C yr BP . Closed-canopy North Patagonian Evergreen Forest was established by 12,500 14C yr BP . Later, after c. 12,000 until 10,000 14C yr BP , depending on location, forest at low elevations became modified by expansion of a cold-tolerant element indicative of ≥2–3°C cooler climate. This stepwise climatic sequence is seen at all late-glacial sites. Cool, humid interstadial conditions, punctuated by cold stadial climate, are characteristic of the last ≥40,000 14C years of the Pleistocene at midlatitude in the Southern Hemisphere. Pollen sequences from southern South America and terrestrial–marine records from the New Zealand–Tasmania sector express a broad measure of synchrony of vegetational/climatic change for marine oxygen-isotope Stages 2–3. The data, combined with the timing of glacial maxima in the Southern Andes, Southern Alps of New Zealand, and in the Northern Hemisphere, are indicative of synchronous, millennial-scale, midlatitude climatic changes in the polar hemispheres.  相似文献   

9.
The late Quaternary diatom record from subalpine Crowfoot Lake, Banff National Park, Alberta (lat. 51° 61N; long. 116° 31W) has been analyzed. Results are related to independently inferred vegetation and climate changes. No diatoms were found in the basal diamict that predates 11330 14C yr BP. Very few occur until ca. 10 10014 C yr BP probably due to the short time between de-glaciation and an advance of the Crowfoot Glacier during the Younger Dryas Chron. Initial pioneering species were characteristic of alkaline water and calcareous organic sediments. They appeared as sediments became organic and laminated suggesting increasing water clarity, and as the Pinus-dominated forest expanded and the climate warmed. After ca. 9060 14C yr BP diatom numbers increased rapidly, reaching a maximum prior to the Mazama tephra; they remained high until ca. 3500 14C yr BP. The period between ca. 9060 and 3500 14C yr saw timberline elevation increase and the dominance of xerophytic taxa. These are consistent with early to mid-Holocene warmth and aridity. Diatom productivity reflects the warm climate and presumably longer ice-free season, a stable catchment and transparent water. Decreases in diatom productivity coincide with a vegetation change with reduction of xerophytic taxa and the appearance of a closed Picea-Abies forest, hence a cooler, wetter climate at ca. 4100 to 3500 14C yr BP. The diatom numbers during the Neoglacial were of the same magnitude as prior to ca. 9060 14C yr BP. Small species of Fragilaria (overwhelmingly Fragilaria construens v. venter) became extremely dominant during the period of high diatom productivity, and remained so thereafter. Recovery of the lake appears to have been rapid after deposition of the Mazama tephra. Maximum occurrence of Cyclotella radiosa occurred ca. 8000 14C yr BP during the warm early Holocene and may reflect this warmer climate, a longer ice-free season than presently, perhaps less turbid water, or it may reflect a subtly higher nutrient status of the lake water. The diatom record of Crowfoot Lake has responded with sensitivity, particularly in terms of productivity, to the Holocene vegetation and climate changes.  相似文献   

10.
Sedimentary, palynologic and 14C analysis of marls and swamp‐peats, formed under fluctuating artesian spring conditions, provide climate and vegetation records from >52,000 to 0 yr BP at Mowbray, and 30,000 to 0 yr BP at Broadmeadows. Before about 65,000 yr BP conditions at Mowbray were relatively dry and the vegetation was Leptospermum shrubland. After 65,000 and before 55,000 yr BP moist conditions produced Cyperaceae swamps. Between 55,000 and 45,000 yr BP the climate was relatively dry, and between 45,000 and 35,000 yr BP relatively moist. Leptospermum shrubs were dominant in both periods. The climate was moist between 35,000 and 22,000 yr BP and sedge swamps formed. Between 22,000 and 11,000 yr BP the climate was relatively dry and grasses were important. Postglacial climate (11,000–0 yr BP) was warm and moist, and Melaleuca‐Leptospermum forest and shrubland flourished. The climatic changes suggested for north western Tasmania seem to compare broadly with changes suggested for Tasmanian and for other southern Australian sites, but the correlation is limited by imprecise dating.  相似文献   

11.
This study of fossils (pollen, plant macrofossils, stomata and fish) and sediments (lithostratigraphy and geochemistry) from the Wendel site in North Dakota, USA, emphasizes the importance of considering ground-water hydrology when deciphering paleoclimate signals from lakes in postglacial landscapes. The Wendel site was a paleolake from about 11,500 14C yr BP to 11,100 14C yr BP. Afterwards, the lake-level lowered until it became a prairie marsh by 9,300 14C yr BP and finally, at 8,500 14C yr BP, an ephemeral wetland as it is today. Meanwhile, the vegetation changed from a white spruce parkland (11,500 to 10,500 14C yr BP) to deciduous parkland, followed by grassland at 9,300 14C yr BP. The pattern and timing of these aquatic and terrestrial changes are similar to coeval kettle lake records from adjacent uplands, providing a regional aridity signal. However, two local sources of ground water were identified from the fossil and geochemical data, which mediated atmospheric inputs to the Wendel basin. First, the paleolake received water from the melting of stagnant ice buried under local till for about 900 years after glacier recession. Later, Holocene droughts probably caused the lower-elevation Wendel site to capture the ground water of up-gradient lakes.  相似文献   

12.
Stratigraphic analysis of fossil chironomid head capsules wasperformed at North Crater Lake and Lake of the Woods, located at treeline (2250m) in the Ashnola region of southernmost British Columbia. Priorto 10,000 yr BP, cold conditions were indicated by the lack oftemperate taxa and the presence of cold-stenotherms. The abundance anddiversity of warm-adapted taxa (e.g., Dicrotendipes,Microtendipes, Polypedilum and Cladopelma)increased rapidly after 9500 yr BP, whereas taxa indicative ofcold conditions disappeared. Beginning prior to deposition of the Mazama ash(6730 ± 40 yr BP), several warm-adapted taxa decreasedin abundance. Mid- to late-Holocene assemblages (ca. 4500yr BP to present) indicated continued cooling as revealed by afurther reduction in diversity and abundance of warm-adapted taxa atboth lakes, and the reappearance of cold-stenotherms in Lake of theWoods. Diversity changes in the cores paralleled the inferred climatic changes.Diversity was low during the late-glacial, increased in theearly-Holocene, and declined after 5400 yr BP.To quantitatively infer past climatic changes, a newweighted yphen;averaging partial-least-squares (WA-PLS)model was developed and applied to the fossil midge data. The quantitativereconstructions revealed late-glacial mean July air temperatures rangingfrom about 8 to 10°C. Summer air temperatures were highest inthe early Holocene (13 to 17°C), gradually decreasing by about3°C through the mid- to late-Holocene.  相似文献   

13.
Lithostratigrahic and mineralogic analyses of sediments from hypersaline Bainbridge Crater Lake, Galápagos Islands, provide evidence of past El Niño frequency and intensity. Laminated sediments indicate that at least 435 moderate to very strong El Niño events have occurred since 6100 14C yr BP (7130 cal yr BP), and that frequency and intensity of events increased at about 3000 14C yr BP (3100 cal yr BP). El Niño activity was present between 6100 and 4000 14C yr BP (4600 cal yr BP) but infrequent. The Bainbridge record indicates that there has been considerable millennial-scale variability in El Niño since the mid-Holocene.  相似文献   

14.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

15.
We used multiple variables in a sediment core from Lake Peten-Itza, Peten, Guatemala, to infer Holocene climate change and human influence on the regional environment. Multiple proxies including pollen, stable isotope geochemistry, elemental composition, and magnetic susceptibility in samples from the same core allow differentiation of natural versus anthropogenic environmental changes. Core chronology is based on AMS 14C measurement of terrestrial wood and charcoal and thus avoids the vagaries of hard-water-lake error. During the earliest Holocene, prior to 9000 14C yr BP, the coring site was not covered by water and all proxies suggest that climatic conditions were relatively dry. Water covered the coring site by 9000 14C yr BP, coinciding with filling of other lakes in Peten and farther north on the Yucatan Peninsula. During the early Holocene (9000 to 6800 14C yr BP), pollen data suggest moist conditions, but high 18O values are indicative of relatively high E/P. This apparent discrepancy may be due to a greater fractional loss of the lake's water budget to evaporation during the early stages of lake filling. Nonetheless, conditions were moist enough to support semi-deciduous lowland forest. Decrease in 18O values and associated change in ostracod species at 6800 14C yr BP suggest a transition to even moister conditions. Decline in lowland forest taxa beginning 5780 14C yr BP may indicate early human disturbance. By 2800 14C yr BP, Maya impact on the environment is documented by accelerated forest clearance and associated soil erosion. Multiple proxies indicate forest recovery and soil stabilization beginning 1100 to 1000 14C yr BP, following the collapse of Classic Maya civilization.  相似文献   

16.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

17.
Vegetation changes reflected in fossil pollen spectra are a primary source of information about climate fluctuations in the past. A statistical-information (transfer function) method based on the correlation of recent pollen spectra with modern climate conditions has been used to reconstruct Holocene climatic changes from fossil pollen. Climatic variables used for the reconstructions are the mean annual, January, July temperatures and annual precipitation. Peat sections with pollen and 14C data from the Arctic Russia were used for the reconstructions. The reconstructed climate fluctuations are similar to the climate changes obtained from many sites in the former USSR. A clear signal for Younger Dryas cooling, 11,000-10,000 yr BP and early Preboreal warming is apparent. The early Preboreal (10,000-9000 yr BP) was the warmest time for sites from modern coastal and island areas. The warm interval occurred in the Boreal period, about 8500 yr BP. According to the reconstructions the warmest time for non-coastal areas was the last half of Atlantic period, 6000-4500 yr BP. Other warm intervals were reconstructed about 3500 and 1000 yr BP. Reconstructions show that warming periods are primarily defined as times of increased summer temperatures, and cooling periods as time of decreased winter temperatures. The precipitation followed the temperatures: during the warming periods precipitation increased and during the cooling periods it decreased. Precipitation maximum, about 100 mm higher than present, are reconstructed for the warmest interval, 6000-4500 yr BP at all sites.  相似文献   

18.
Late Quaternary environments have been studied by pollen analysis of lake sediments from the savannas of the Colombian Llanos Orientales at 180 m elevation. The pollen record form Laguna El Pinal (4°08N, 70°23W), dated by 6 AMS radiocarbon dates, starts at 18,290 14C yr B.P. The record from Laguna Carimagua (4°04N, 70°14W), also dated by 6 AMS dates, starts at 8270 14C yr B.P. Both records show a landscape dominated by grassland savanna with only few woody savanna taxa, such as Curatella and Byrsonima, frequent fires, and little occurrence of forest and/or gallery forest along the rivers. The savanna ecosystem at the studied sites was relatively stable during the last 18,000 yrs, but minor changes in floral composition, and in the proportion of savanna/forest, have been recorded. Very little gallery forest and the non permanent lake conditions of Laguna El Pinal reflect the driest period, interpreted to reflect low rainfall rates and long dry seasons during the Last Glacial Maximum until 10,690 14 C yr B.P. During the Late Glacial, Laguna El Pinal was a permanent shallow lake, and changed into a lake with higher water levels during the Holocene, indicating wetter conditions. Expansion of regional gallery forest also started at around 10,690 14C yr B.P. Little vegetational change observed in Laguna Carimagua at 5570 14 C yr B.P., in combination with a simultaneous decrease of savanna observed in previously studied lakes, suggest a change to regional wetter conditions. Thus, the Holocene before 5500 14 C yr B.P. was somewhat drier than the following period until about 3850 14C yr B.P. In both records, Late Holocene lake deposits are incomplete. Shore vegetation of Laguna Carimagua always included a minor contribution of the palms Mauritia and Mauritiella. The marked increase of palms during the last c. 3800 yrs points to increased human impact on the vegetation under the wettest Holocene climate regime.  相似文献   

19.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

20.
Airborne lidar data from the northern Puget Lowland provide information on the spatial variability and amplitude of raised postglacial shorelines, marine deltaic features and glaciomarine sediments deposited between approximately c. 12 920 and 11 050 14C yr BP (15 960‐12 364 cal yr BP). Relict shorelines preserved in embayments on Whidbey and Camano islands (between 47°54′N and 48°24′N) are found up to an altitude of c. 90 m and record glacio‐isostatic movements attributed to postglacial rebound. The tilt of the regional minimum highstand sea level surface to the north of 0.80 m km?1, with local variability from 0.25 m km?1 to 0.77 m km?1, is consistent with previous studies (Thorson 1989; Dethier et al. 1995). The local variability is related to the uncertainty in the depth of the water column above these features at the time of deposition and probable tectonic deformation. The information generated by these lidar data is most valuable in posing new research questions, generating alternative research hypotheses to those already formulated in the northern Puget Lowland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号