首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
由天线成像原理可知,通过密云50 m天线、“嫦娥一号”卫星(CE-1)和“嫦娥二号”卫星(CE-2)所搭载微波探测仪获取的月球亮温度图是微波天线方向图与真实亮温度图的卷积,所以想清晰准确地还原亮温度图,就必须采取反卷积方法.在处理过程中引入最大熵方法,选择基于Bonavito提出的直接迭代法求解方式,并论证了其作为反卷积方法的可行性,通过一系列的模拟仿真验证其反卷积的有效性.仿真结果理想,对后期处理真实数据(密云50 m天线观测数据,微波探测仪观测数据)打下坚实的基础.  相似文献   

2.
本文分析了1993年11月16日—12月4日期间用青海13.7米射电望远镜(22.235GH_2)观测的毫米波活动区及其爆发的观测特性,得到如下几点结论:1.毫米波活动区出现双极环结构是衰亡的征兆。2.毫米波上的渐升渐降型(GRE)爆发,与H_a耀斑和软X射线爆相关性强,其辐射为热迥旋辐射机制,其爆发源可能在色球高层。3.在GRE爆发上没有观测到毫秒快速精细结构,这与目前分米波的观测结果是一致的。  相似文献   

3.
脉冲星的射电辐射与其他天体物理辐射源有很大的不同,因为它们有着极高的亮温度和高度的线或圆偏振。极高的亮温度意味着起作用的发射机制一定是相干的。至今尚无对这种辐射普遍接受的模型。本文讨论了关于脉冲星的射电辐射产生和传播研究中的新进展。  相似文献   

4.
微波Ⅲ型爆发在1—2GHz太阳射电快速频谱仪上的观测   总被引:1,自引:0,他引:1  
叙述了1997年1月至1998年4月,使用北京天台7m射电望远镜在1-2GHz频率上观测的微波Ⅲ型爆发的分析结果。共分析60个事件,获得了单峰、多峰、群集和负吸收微波Ⅲ型爆发的四种型别。通过对它们的频宽、频漂、偏振等重要参量的分析,初步得出微波Ⅲ型爆发在1-2GHz上的一些基本特性。  相似文献   

5.
中国计划于2025年左右建立月球轨道VLBI (Very Long Baseline Interferometer)测站,将会搭载被动型星载氢钟作为时间频率标准.由于是首次在VLBI观测中使用星载氢钟,需要研究和验证其可行性.因此,利用星载氢钟作为频率基准开展了VLBI观测.实验时,分别使用主动型地面氢钟和被动型星载氢钟作为频率基准,利用上海天文台佘山25 m射电望远镜和其他测站对我国火星探测器天问一号进行了交替VLBI观测.数据处理分析结果表明,基于地面氢钟与星载氢钟的VLBI残余群时延标准差均在0.5 ns以内,表明星载氢钟可满足深空探测VLBI测定轨的精度要求,验证了其作为月球VLBI测站频率基准的可行性.  相似文献   

6.
对1998年6月29日云南天文台高时间分辨率射电望远镜观测到的微波超快速吸收现象进行了分析研究。在世界时07h38m50s至07h38m58s超快速吸收现象出现在太阳活动区NOAA/USAF5060上空的4.00GHz上,而在2.84GHz和1.42GHz上空出现的是spike辐射。当时,该活动区呈现出极其活跃的双极磁场位形。在世界时07h38m至08h47m先后产生了3B级和2B级的Haiqny  相似文献   

7.
本文对太阳射电精细结构这一领域进行了较为详尽深入的调研 ,发现由于观测仪器技术指标 (时间、频率、频率覆盖、偏振、灵敏度等 )相对不高 ,有很多的精细结构 ,在时间上、在频率上并没有被完全分解开来 ,或是没有被检测到。对FFS的研究 ,还处于发现 -认识 -逐步深化的阶段。观测资料还很单薄。在微波高端 (厘米波段 ) ,精细结构的观测资料更是很少。另外 ,对FFS也只是有一个侧重频谱形态的分类。本文利用我国的“太阳射电宽带快速频谱仪”的观测资料 ,几年来 ,对微波频段的射电快速精细结构进行了较为深入的研究。主要研究结果有 :发现了弱偏振微波尖峰辐射中两个偏振分量之间的时间延迟和偏振反转现象 ;首次发现了微波 (短分米波段 )高偏振U型爆发并给出解释 ;首次发现了厘米波N型和M型爆发并给出解释 ;首次发现了高偏振微波斑点并给出解释 ;首次利用甚高频率分辨率频谱仪 ,通过对大样本的分米波尖峰辐射的统计 ,给出了更为可靠的、更小的相对带宽的下限 ;结合高空间分辨率的观测资料 ,对运动Ⅳ型爆发及其伴生的精细结构作了探讨 ;对双向电子束的起源及其加速位置进行了研究  相似文献   

8.
本介绍了云南天台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辨率同步观测得到的五个微波III爆发事件,它们具有宽频带,长和短寿命,内向和外向快速频漂等特征,观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生,这些观测特征即可不完全同于米波-分米波III型爆发,也不完全同于微波高频段III型爆发,说明在微波低频段可能存在二重性或过渡现象。  相似文献   

9.
叙述了1997年1月至1998年4月,使用北京天文台7m射电望远镜在1-2GHz频率上观测的微波Ⅲ型爆发的分析结果.共分析60个事件,获得了单峰、多峰、群集和负吸收微波Ⅲ型爆发的四种型别.通过对它们的频宽、频漂、偏振等重要参量的分析,初步得出微波Ⅲ型爆发在1-2GHz上的一些基本特性.  相似文献   

10.
地基雷达观测可以提供太阳系天体目标的地形地貌、物理特征、轨道动力等信息。聚焦利用地基雷达天文技术开展月球观测的原理方法和科学意义,介绍了基于我国现有深空雷达上行装置、射电望远镜条件以及非相干散射雷达等系统,初步开展的特高频段(Ultra High Frequency,UHF)和X频段的地基雷达观测月球试验。通过月球反射回波的信号处理,获得了延迟、多普勒频移等参数,得到了一致的与近表层物质密度相关的月面雷达反射率,并得到了月球的左右旋圆极化率,反映了与波长同尺度的月球近表层结构。文章积累的数据处理经验将为我国的小行星预警、行星历表等地基雷达观测研究提供技术基础。  相似文献   

11.
Polarimetric observations of the moon have been carried out at λeff = 0.48 and 0.63 μm using the 50 cm telescope of the Maidanak (Middle Asia) observatory. Imaging has been performed using a Canon-350D camera with a CMOS array and rotating polaroid. The investigation covered the north-western part of the lunar disk comprising the northern part of Ocean Procellarum and obtained the images representing the albedo, polarization degree, color index, and polarimetric color ratio at a phase angle of 96°. It is the first time that the latter parameter has been imaged with a resolution of approximately 1 km. Its pattern has proved to resemble that of the color index, although some important differences can be seen. This shows that spectropolarimetric observations of the moon can give new information on the composition and optical properties of the lunar regolith.  相似文献   

12.
Abstract— The meteorite Northwest Africa 773 (NWA 773) is a lunar sample with implications for the evolution of mafic magmas on the moon. A combination of key parameters including whole‐rock oxygen isotopic composition, Fe/Mn ratios in mafic silicates, noble gas concentrations, a KREEP‐like rare earth element pattern, and the presence of regolith agglutinate fragments indicate a lunar origin for NWA 773. Partial maskelynitization of feldspar and occasional twinning of pyroxene are attributed to shock deformation. Terrestrial weathering has caused fracturing and precipitation of Carich carbonates and sulfates in the fractures, but lunar minerals appear fresh and unoxidized. The meteorite is composed of two distinct lithologies: a two‐pyroxene olivine gabbro with cumulate texture, and a polymict, fragmental regolith breccia. The olivine gabbro is dominated by cumulate olivine with pigeonite, augite, and interstitial plagioclase feldspar. The breccia consists of several types of clasts but is dominated by clasts from the gabbro and more FeO‐rich derivatives. Variations in clast mineral assemblage and pyroxene Mg/(Mg + Fe) and Ti/(Ti + Cr) record an igneous Fe‐enrichment trend that culminated in crystallization of fayalite + silica + hedenbergite‐bearing symplectites. The Fe‐enrichment trend and cumulate textures observed in NWA 773 are similar to features of terrestrial ponded lava flows and shallow‐level mafic intrusives, indicating that NWA 773 may be from a layered mafic intrusion or a thick, differentiated lava flow. NWA 773 and several other mafic lunar meteorites have LREE‐enriched patters distinct from Apollo and Luna mare basalts, which tend to be LREE‐depleted. This is somewhat surprising in light of remote sensing data that indicates that the Apollo and Luna missions sampled a portion of the moon that was enriched in incompatible heatproducing elements.  相似文献   

13.
In contrast to earth, the atmosphere of the moon is exceedingly tenuous and appears to consist mainly of noble gases. The solar wind impinges on the lunar surface, supplying detectable amounts of helium, neon and 36Ar. Influxes of solar wind protons and carbon and nitrogen ions are significant, but atmospheric gases containing these elements have not been positively identified. Radiogenic 40Ar and 222Rn produced within the moon have been detected. The present rate of effusion of argon from the moon accounts for about 0.4% of the total production of 40Ar due to decay of 40K if the average abundance of potassium in the moon is 1000 ppm. Lack of weathering processes in the regolith suggests that most of the atmospheric 40Ar originates deep in the lunar interior, perhaps in a partially molten core. If so, other gases may be vented along with the argon.  相似文献   

14.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

15.
Lunar Penetrating Radar(LPR) based on the time domain Ultra-Wideband(UWB) technique onboard China's Chang'e-3(CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.  相似文献   

16.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

17.
Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.  相似文献   

18.
A model for shock-lithification of terrestrial and lunar regolith is proposed that accounts for: (1) observed petrographic properties and densities of shock-lithified material from missile impact craters at White Sands, New Mexico and from Meteor Crater, Arizona; (2) observed petrographic textures of lunar soil and lunar soil analogues experimentally shocked to known pressures in laboratory experiments; (3) theoretical calculations of the behavior of air and water under shock compression; and (4) measured Hugoniot and release adiabat data on dry and wet terrestrial soils and lunar regolith. In this model it is proposed that air or an air-water mixture initially in the pores of terrestrial soil affects the behavior of the soil-air-water system under shock-loading. Shock-lithified rocks found at Meteor Crater are classified as ‘strongly lithified’ and ‘weakly lithified’ on the basis of their strength in hand specimen; only weakly lithified rocks are found at the missile impact craters. These qualitative strength properties are related to the mechanisms of bonding in the rocks. The densities of weakly lithified samples are directly related to the pressures to which they were shock-loaded. A comparison of the petrographic textures and densities of weakly lithified samples with textures and densities of ‘regolith’ shock-loaded to known pressures suggests that weakly lithified terrestrial samples formed at pressures well under 100 kb, probably under 50 kb. If terrestrial soils are shock-loaded to pressures between 100 and 200 kb by impact events of short duration, the pore pressure due to hot air or air-water mixtures exceeds the strength of the weak lithification mechanisms and fragmentation, rather than lithification, occurs. At pressures above 200 kb, lithification can occur because the formation of glass provides a lithification mechanism which has sufficient strength to withstand the pore pressure. During shock-lithification of lunar regolith at pressures below 50 kb, the material is compressed to intrinsic crystal density and remains at approximately that density upon release from the shocked state. It is proposed, however, that at pressures in excess of 50 kb, the release of trapped volatiles from lunar soil grains into fractures causes an expansion of the regolith during unloading from the shocked state.  相似文献   

19.
Abstract— We have analyzed a suite of lunar regolith breccias in order to assess how well space weathering products can be preserved through the lithification process and therefore whether or not it is appropriate to search for space weathering products in asteroidal regolith breccia meteorites. It was found that space weathering products, vapor/sputter deposited nanophase‐iron‐bearing rims in particular, are easily identified in even heavily shocked/compacted lunar regolith breccias. Such rims, if created on asteroids, should thus be preserved in asteroidal regolith breccia meteorites. Two additional rim types, glass rims and vesicular rims, identified in regolith breccias, are also described. These rims are common in lunar regolith breccias but rare to absent in lunar soils, which suggests that they are created in the breccia‐forming process itself. While not “space weathering products” in the strictest sense, these additional rims give us insight into the regolith breccia formation process. The presence or absence of glass and/or vesicular rims in asteroidal regolith breccias will likewise tell us about environmental conditions on the surface of the asteroid body on which the breccia was created.  相似文献   

20.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号