首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
Absolute spectrophotometry of the coma of Comet Kohoutek 1973f during post-perihelion period has been presented for seven nights in January 1984. Moderately wide range of heliocentric distance (0.436–0.799 AU) covered during observations allowed us to study the flux variation of emission bands with heliocentric distance. The emission features of CN, CH, C2, C3, and NaI have been identified in this comet. The abundances of CN and C2 have been estimated and the production rates of CN, C2 and C3 have been derived. Production rates of CN and C2 seem to vary as r –0.33 and r –3.50 respectively. The continuum of the comet became more and more redder as the heliocentric distance of the comet increased and phase angle decreased.  相似文献   

2.
CCD images of comet P/Grigg-Skjellerup, obtained for astrometric purposes with the 3.5 m telescope at the Calar Alto Observatory/Spain, were used for an analysis of the activity status of the nucleus and for a search of faint coma structures. The nucleus was found essentially inactive beyond 2.7 AU solar distance both inbound and outbound (observations on 12–13 August, 1986, 21–23 October, 1986, 22 August, 1988, 18 October, 1988, 9 and 12 September, 1991 and 3 December, 1991). The coma of the comet was well developed in May and July 1987 with a diameter of at least 190 000 km on 24 May, 1987 and of at least 80 000 km on 24 July 1987. The coma showed a cone of diffuse brightness enhancement in the sunward hemisphere. The orientation of the cone axis changed from the Sun direction in May 1987 towards about North in July 1987, i.e., it was almost perpendicular to the projected Sun-nucleus line on the sky. The cone opening angle became smaller from about 100 in May to about 50 in July 1987. A weak and narrow plasma tail was found in the images of May 1987.  相似文献   

3.
The nucleus of Comet 2P/Encke was detected with the Arecibo radar during the close approach of November, 2003, making this the first comet to yield radar detections at two different apparitions. Although the measured radar cross section of 1.0 km2 was close to that obtained in 1980, the Doppler bandwidth was nearly four times larger. Most of this bandwidth difference can simply be attributed to a different observing aspect relative to the spin axis proposed by Sekanina [1988, Astron. J. 95, 911] and Festou and Barale [2000, Astron. J. 119, 3119]. Comparison of the 2003 Doppler bandwidth with infrared-based size estimates supports an 11-h dominant rotation period and excludes slower 15- and 22-h periods that have also been suggested. If one assumes a short-axis-mode rotation with an 11-h period, then the Doppler bandwidth indicates that the nucleus is an oblong object with a long-axis dimension of 9 km. The estimated radar albedo of 0.05 is similar to that measured for C/IRAS-Araki-Alcock, providing further evidence that comet nuclei have relatively low surface densities of ∼0.5-1.0 g cm−3. No broadband echo component was detected from large coma grains despite predictions, based on optical/infrared models, that such a component might be detectable.  相似文献   

4.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

5.
We consider the secular effect of outgassing torques on the rotation of a comet nucleus. An averaging method is applied to obtain evolutionary equations which allow us to study the long-term variations in the nucleus spin state. Since the spin axis direction of 19P/Borrelly’s nucleus is close to the line of apsides direction, a simplified version of these equations can be written to analytically study the most important qualitative effects. In particular, a correlation between the drift of the rotation axis direction and the possible spin up/spin down of the nucleus is revealed.  相似文献   

6.
The Jupiter family comet 73P/Schwassmann-Wachmann 3 has been widely observed since 1995 after a nucleus break-up event produced at least five components labeled 73P-A to E. During the 2006 appearance, two of them (B and C) showed very strong coma activity. Our R-filter imaging of 73P-B & C from 21 January to 25 May 2006 revealed the presence of fan-like structures in the comae of both components and evidence for further fragmentation events in component B. As of early April 2006, component C showed two jets emanating from the nucleus, with one continuously visible. Through a simulation of the orbital geometry we infer that the rotation axis of 73P-C has an inclination of 20° to the orbital plane and a longitude of 45° at perihelion. The coma activity of component B was highly variable, displaying signatures of at least 3 fragmentation events. The coma was characterized by the continuous presence of a jet roughly in sunward direction, starting from the beginning of May. The first fragmentation event of component B may have happened between April 16 and April 26, leading to the presence of at least 6 fragments detected in images of May 2. The second one happened on or shortly before May 8, the third one between May 18 and 24. For the rotation axis of 73P-B we infer an inclination of 5°–15° to the orbital plane and a longitude of 20°–30° at perihelion.  相似文献   

7.
We present imaging and spectroscopic data on Comet 19P/Borrelly that were obtained around the time of the Deep Space 1 encounter and in subsequent months. In the four months after perihelion, the comet showed a strong primary (sunward) jet that is aligned with the nucleus' spin axis. A weaker secondary jet on the opposite hemisphere appeared to become active around the end of 2001, when the primary jet was shutting down. We investigated the gas and dust distributions in the coma, which exhibited strong asymmetries in the sunward/antisunward direction. A comparison of the CN and C2 distributions from 2001 and 1994 (during times when the viewing geometry was almost identical) shows that each species is remarkably similar, indicating that the comet's activity is essentially repeatable from one apparition to the next. We also measured the dust reflectivities as a function of wavelength and position in the coma, and though the dust was very red overall, we again found variations with respect to the solar direction. We used the primary jet's appearance on several dates to determine the orientation of the rotation pole to be α=214°, δ=−5°. We compared this result to published images from 1994 to conclude that the nucleus is near a state of simple rotation. However, data from the 1911, 1918, and 1925 apparitions indicate that the pole might have shifted by 5-10° since the comet was discovered. Using our pole position and the published nongravitational acceleration terms, we computed a mass of the nucleus of 3.3×1016 g and a bulk density of 0.49 g cm−3 (with a range of 0.29<ρ<0.83 g cm−3). This result is the least model-dependent comet density known to date.  相似文献   

8.
One of the two planetary cornerstone missions of the European Space Agency is the Rosetta mission to comet 67P/Churyumov-Gerasimenko. Rosetta is a rendezvous mission with a comet nucleus, which combines an Orbiter with a Lander. It will monitor the evolution of the comet nucleus and the coma as a function of increasing and decreasing solar flux input along the comet’s pre- and post-perihelion orbit. Different instrumentations will be used in parallel, from multi-wavelength spectrometry to in-situ measurements of coma and nucleus composition and physical properties. Rosetta will go in orbit around the nucleus of its target comet 67P/Churyumov-Gerasimenko, when it is still far from the Sun and accompany the comet along its way to perihelion and beyond. In addition the Rosetta Lander Philae will land on the nucleus surface, before the comet is too active to permit such a landing (i.e. at around r = 3 AU) and examine the surface and subsurface composition of the comet nucleus as well as its physical properties.  相似文献   

9.
An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet’s coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet’s dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet’s orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet’s orbit remains nearly parabolic after passing the orbits of all the Solar System planets.  相似文献   

10.
Micha? Drahus  Wac?aw Waniak 《Icarus》2006,185(2):544-557
The article presents results of CCD photometry in R-band of a dynamically new Comet C/2001 K5 (LINEAR), obtained at a heliocentric distance of about 5.6 AU, after the perihelion passage. Being so distant from the Sun, this comet was extremely active (Afρ close to 2000 cm), exhibiting quite well developed dust coma and tail. During the observations, general photometric behavior of the comet with heliocentric distance r was well described by the 2.5nlog(r) function with coefficient n=5. The radial profiles of the coma were found to be undulated, with mean slope of the dependence between cometary magnitude and 2.5log of aperture radius (at comet distance) equal to . The light curve of Comet LINEAR exhibited short-term variability which we attributed to cyclic changes of dust emission, induced by nucleus rotation. Model computations by some authors have revealed that active comets can change their spin status quite substantially even during a single orbital revolution. Thus, attempting to search for a rotation frequency, we have modified the classical PDM approach by including the spin acceleration term. Such DynamicalPDM (DPDM) method revealed the most reliable solution for the frequency f0=0.019048±0.000013 h−1 and its first time-derivative (index “zero” denotes reference to the mid time of the whole observing run), indicating a rapid spin-down of the nucleus. These parameters are equivalent to the rotation period of 52.499±0.036 h and its relative increment of 0.02729±0.00013. We present the most probable evolution of the rotation frequency of Comet LINEAR, based on the results of periodicity analysis and a simple, almost parameter independent, dynamical model of nucleus rotation. It is also shown that the DPDM may be an effective tool for determination of a nucleus radius, which provided us with the value of 1.53±0.25 km for Comet LINEAR.  相似文献   

11.
CCD images of comet P/Swift-Tuttle, obtained in April 1994 with the 2.2m telescope at ESO La Silla/Chile, showed a comaless stellar nucleus. From absolute photometry we estimated the equivalent radius of the cometary nucleus to be about 11 km (assuming an albedo of 0.04 as for P/Halley) for two rotation phase angles which differ by about 75 deg. From that we conclude that the nucleus is either of rather spherical shape or that the viewing geometry was almost pole-on during our observations.An analysis of the plasma tail and inner coma of the comet by means of photographic plates and CCD images through IHW and BVR filters, obtained with the 80cm Schmidt camera and the 1.2m telescope at Calar Alto/Spain in November 1992, revealed several tail rays, head streamers and substructures in brightness excess areas in the coma. While some of the tail rays extended to several million km nuclear distance, most of them can be traced to starting points which lie in a region just 20000–35000 km projected distance tailward from the nucleus.  相似文献   

12.
The results of the photometric observations of comet 29P/Schwassmann-Wachmann 1 are analyzed. The comet demonstrates substantial activity at heliocentric distances larger than 5 AU, i.e., outside the water ice sublimation zone. The CCD images of the comet were obtained in wideband R filters at the 6-meter telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and at the 2-meter Zeiss-2000 telescope of the Peak Terskol Observatory. The processing of the images with special digital filters allowed the active structures (jets) to be distinguished in the dust coma of the comet. With the cross-correlation method, the rotation period of the cometary nucleus was determined as 12.1 ± 1.2 and 11.7 ± 1.5 days for the observations taken in December 2008, and February 2009, respectively. The probable causes of the difference in the estimates of the rotation period of the cometary nucleus obtained by different authors are discussed.  相似文献   

13.
David Jewitt 《Icarus》1984,60(2):373-385
Optical and infrared observations of comet Bowell are presented. The optical observations indicate that the solid grain coma is expanding at only 0.9 ± 0.2 m sec?1. This is two orders of magnitude slower than the local gas sound speed and may suggest that gas drag is not responsible for stripping the grains from the nucleus. The hypothesis of “electrostatic snap-off” is tentatively advanced to account for the ejection of the grains. Alternatively, the grains may have an unusual size distribution. The extrapolated motion of the grains suggests that the bulk of the coma was formed when the comet was at a heliocentric distance R ? 10 AU. Any water ice in the nucleus would be too cold to give rise to the observed grain coma by equilibrium sublimation at this R. Further evidence against the production of the grain coma by equilibrium sublimation of the nucleus is provided by broadband (J) photometric observations. Almost all of the observed photometric variations of comet Bowell can be ascribed to geometric effects. Simple models indicate that the total grain cross section has been nearly constant since the time of the earliest observations. The present observations, which suggest that water ice sublimation does not control either the optical morphology or the near infrared photometric behavior of comet Bowell, are contrasted with reported high OH production rates. It is concluded that the grain coma may be largely a relic of activity occurring on the nucleus at R ? 10 AU while the OH may indicate sublimation from the nucleus near perihelion and from coma grains near R ? 4.6 AU.  相似文献   

14.
We calculate the direction of the rotational angular momentum vector,M, of comet 19P/Borrelly based on rotational lightcurve data from 2000, groundbased imaging of the coma during the Deep Space 1encounter, and the basic near-nucleus coma morphology as revealed by the Deep Space 1 spacecraft. For the most likely direction, we derivea family of solutions (with center at RA = 221°, Dec = -7°) if the direction of M is towards the sunward hemisphere during the Deep Space 1 encounter, whereas if the rotation is of opposite sense, the diametrically opposite family of solutions (with center at RA = 41°, Dec = 7°) would result. We argue that the coma morphology in September 2001 is consistent with the nucleus being a principal axis rotator or one observationally indistinguishable from it. Therefore, for all practical purposes, the direction of the rotational angular momentum vector coincides with the spin axis. We also discuss why the determination of the spin axis direction based on observations from the last apparition is in disagreement with the current result.  相似文献   

15.
We report time-resolved imaging UV photometry of Comet 9P/Tempel 1 during the interval 2005 June 29-2005 July 21, including intensive coverage of the collision with the Deep Impact probe and its immediate aftermath. The nuclear flux of the comet begins to rise within minutes of the collision, and peaks about 3 h after impact. There is no evidence for a prompt flash at the time of impact. The comet exhibits a significant re-brightening about 40 h after the initial outburst, consistent with the rotation period of the comet, with evidence for further periodic re-brightenings on subsequent rotations. Modelling of the brightness profile of the coma as a function of time suggests two distinct velocity systems in the ejecta, at de-projected expansion speeds of 190 and 550 m/s, which we suggest are due to dust and gas, respectively. There is a distinct asymmetry in the slower-moving (dust) component as a function of position angle on the sky. This is confirmed by direct imaging analysis, which reveals an expanding plume of material concentrated in the impact hemisphere. The projected expansion velocity of the leading edge of this plume, measured directly from the imaging data, is 190 m/s, consistent with the velocity of the dust component determined from the photometric analysis. From our data we determine that a total of (1.4±0.2)×1032 water molecules were ejected in the impact, together with a total scattering area of dust at 300 nm of 190±20 km2.  相似文献   

16.
Parameters of the plasma in the inner coma of comet Halley are derived from the magnetic field measurements by using single particle approximation. Both the plasma velocity and the temperature obtained by using this approach are self-consistent and happen to be in good agreement within situ measurements whereas the neutral gas production rate happens to be 2–3 times higher than the conventionally cited value 6.9 × 1029 s–1.  相似文献   

17.
Comet P/Halley has been observed during its approach to perihelion at heliocentric distancesR = 11.0 AU and R = 8.2 AU. No extended coma is seen and limits can be placed on the fraction of the total light contributed by coma. The brightness of the comet varies on a short time scale. The variations may be due to transient activity or to rotation of the irregular nucleus.  相似文献   

18.
We have investigated the resonances in the earth-moon system around the sun including earth’s equatorial ellipticity. The resonance resulting from the commensurability between the mean motion of the moon and Γ (angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the moon on the plane of the equator) is analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure of Brown and Shook. We have shown the effects of Γ on the amplitude and the time period of the resonance oscillation using the data of the moon. It is observed that the amplitude decreases and the time period also decreases as Γ increases from 0° to 45°.  相似文献   

19.
Comet Bowell (1980b) was observed to pass within 0.25 ± 0.09 arc sec of a star (about 540 km at the comet), where the absorption of starlight by the dust coma was found to be 3% (±1%). The implied optical thickness of 0.03 differs greatly from other determinations and gives a mass of 3 × 1013 g for the coma within 1 × 104 km of the nucleus. Coupled with absolute continuum filter photometry, these results indicate a very low particle albedo consistent with fluffy carbonaceous material. This experiment indicates the need to observe nearly central occulations by several observers to measure the optical thickness profile of a comet. The advantages of using a charge-coupled device area photometer for such observations are discussed.  相似文献   

20.
A model of cometary activity is developed which integrates the feedback processes involving heat, gas, and dust transport, and dust mantle development. The model includes the effects of latitude, rotation, and spin axis orientation. Results are obtained for various grain size distributions, dust-to-ice ratios, and spin axis orientations. Attention is focused on the development, change of structure and distribution of dust mantles and their mutual interaction with ice surface temperature and gas and dust production. In this model the dust mantle controls the mechanism of gas transport not onlu by its effect on the temperature but, more importantly, by its own dynamic stability. Results suggest that an initially homogeneous short-period comet with a “cosmic” dust-to-water ice ratio, typical orbit, rotation rate, and grain size distribution would develop at most only a thin (<1 mm) cyclic mantle at all points on the nucleus. Such a fully developed temporary mantle would exist throughout the diurnal cycle only beyond ~4AU. Thus, cyclic behavior would be expected for such an idealized comet, at least for most of its lifetime. Long-term irreversible mantle development on comets with typical rotation rates was not found except regionally on Encke and also on objects with perihelia ?1.5 AU. Even in these cases, free silicate exists, after a few cycles, only as relatively rare large grains and agglomerates with radii ~1 cm scattered over exposed ice. Full mantle development would require hundreds to thousands of cycles. In the case of an initially homogeneous comet Encke, this slow incipient mantle development is shown to be the direct result of its peculiar axial orientation. High obliquity appears required for long-term mantle development for typical rotation rates and perihelia ?1.5 AU. Heat conduction into the nucleus for an incompletely mantled or bald comet has been found to be very important in maintaining relatively higher ice surface temperatures, and hence fluxes, during those portions of the diurnal and orbital cycles which would otherwise be cooler. It is also shown to be at least one cause of post perihelion brightness asymmetries, especially in lower obliquity comets. Maximum heliocentric distances at which 1-μm dust, sand, pebbles, cobbles, and boulders can be permanently ejected from the subsolar point by H2O (CO2) are (in AU): 6.9 (16.8), 5.2 (11.5), 1.8 (3.0), 0.21 (0.34) and 0.07 (0.11), respectively. A detailed anatomy of temperature, gas and dust fluxes vs latitude and longitude for a homogeneous rotating comet with fixed axis is given for comparison with future observations. Most H2O flux histories deduced from brightness data are found to be in reasonable agreement with the model, allowing for uncertainty in radius and albedo. A clear exception is Encke. It is shown that the large discrepancy between Encke's observed and model predicted fluxes, based on radar cross section, can be used to evaluate the extent of exposed ice (<10%). The model is then used to place an active area so as to explain a reported sharp drop in flux on approach to the Sun at 0.78 AU. An active area or areas, <10% of the comet's surface, centered near 65°N latitude appears indicated. Although cyclic mantles are generally indicated for the set of parameters we used, our results show that a global mantle only 1 to 3 cm thick (depending on the orbit) consisting of a full range of grain sizes can cause irresversible evolution to a noncometary body. We investigated the long-term evolution of such a postulated initially thinly mantled cometary object. It was found that after the first few passes and until the end of its dynamic lifetime the object averaged <3 × 10?12 g cm?1 sec?1 H2O flux. Therefore, if cometary objects evolve into Apollo asteroids, ice should always be accessible within 10 m of the surface despite numerous close perihelion passages. The possible impact of factors not included in the model, such as initial inhomogeneities, coma scattering of radiation, and global redistribution of ejected silicate around the nucleus, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号