首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.  相似文献   

2.
We present inner-coma dust imaging of Comet Hyakutake (1996 B2) obtained on 11 consecutive nights in late March 1996, an interval including a major outburst and the comet’s closest approach to Earth. The evolution of the outburst morphology is followed, along with the motion along the tail of several outburst fragments. Two spiral dust jets—a primary jet, along with a much weaker secondary jet—are visible throughout the interval and are produced by two source regions on a rotating nucleus. These are examined as a function of rotational phase and viewing geometry, with their appearance changing from a nearly face-on view on March 18 to side-on by March 28. The dust outflow velocity as a function of distance from the nucleus is derived, with the dust continuing to accelerate to a distance of 4000 km or more and reaching an average outflow velocity of 0.38 km s−1 between 3000 and 8000 km. We present details of our Monte Carlo modeling of the jets and our methodology of fitting the model to the images. The modeling yields the pole orientation of the nucleus, with an obliquity of approximately 108°, corresponding to an RA of 13h41m and a Dec of −1.1°. For an assumed spherical nucleus, the primary active region is centered at approximately −66° latitude, has a radius of about 56°, and therefore covers about 22% of the surface. The source of the secondary jet is at a latitude of −28°, has a radius of about 16°, and is located at a longitude nearly 180° away from the primary source. Estimated uncertainties for the pole orientation and the source locations and sizes are each about 3°. This solution for the nucleus orientation and source locations explains the strong asymmetry in measured production rates before and after perihelion in radio observations (Biver et al., 1999, Astron. J. 118, 1850-1872). The modeling also tightly constrains the sidereal rotation period as 0.2618 ± 0.0001 day, completely consistent with the expected +0.0003 day difference from the observed solar rotation period of 0.2614 ± 0.0004 day determined by Schleicher and Osip (2002, Icarus 159, 210-233), given the pole orientation and position of the comet in its orbit.  相似文献   

3.
We present analysis and results from both narrowband photometry and CCD imaging of Comet 19P/Borrelly from multiple apparitions. Production rates for Borrelly a few days prior to the Deep Space 1 spacecraft encounter were Q(OH) = 2.1×1028 molecule s−1, Q(CN) = 5.1×1025 molecule s−1, and A(θ)fρ = 400-500 cm. The equivalent Q(water; vectorial) = 2.5×1028 molecule s−1. We also find that the radial fall-off of the dust is significantly steeper than the canonical 1/ρ for aperture sizes larger than ρ = 2×104 km. In the near-UV, a strong trend in dust colors with aperture size is present. Imaging of Borrelly revealed a strong radial jet in the near-sunward direction that turns off late in the apparition. For the jet to appear radial, it must originate at or very close to the nucleus’ pole. Modeling the measured position angle of this jet as a function of time during the 1994 and 2001 apparitions yields a nucleus in a simple, rather than complex, rotational state with a pole orientation having an obliquity of 102.7° ± 0.5° and an orbital longitude of the pole of 146° ± 1°, corresponding to an RA of 214.1° and a Declination of −5.7° (J2000). There is also evidence for a small (∼8°) precession of the pole over the past century, based on our preferred model solution for jet measurements obtained during the 1911-1932 apparitions. Our solution for the orientation of the rotation axis implies a very strong seasonal effect as the source region for the jet moves from summer to winter. This change in solar illumination quantitatively explains both the nearly level water production measured in the seven weeks preceding perihelion and the extremely large decrease in water production (25×) as Borrelly moved from perihelion to 1.9 AU. A much smaller fall-off in apparent dust production after perihelion can be explained by a population of old, very slowly moving large grains released near peak water production, and therefore not indicative of the actual ongoing release of dust grains late in the apparition. Based on the water vaporization rate, the source region has an area of approximately 3.5 km2 or 4% of the total surface area of the nucleus, and water ice having an effective depth of 3-10 m is released each apparition from this source region.  相似文献   

4.
We present results and analysis of imaging polarimetric observations of Comet 2P/Encke. The observations were carried out at the 2-m RCC telescope of the Bulgarian National Astronomical Observatory on December 13, 1993 and on January 14, 1994, at phase angles 51.1° and 80.5°, respectively. A wide-band red filter 6940/790 Å was used. This filter is transparent for the continuum and the weak emission bands of NH2 and H2O+. There is a sunward dust fan with well-defined polarization, which peaks at≈13% in the image obtained on January 14, 1994. Along the sunward fan the degree of polarization decreases progressively. Outside of the fan the coma displays a low polarization of ≈3%. We suggest that this low polarization is caused by the NH2 emission in the pass-band of the red wide-band filter. Assuming a spherically symmetric NH2 coma we are able to correct the observed polarization for this effect. The correction leads to an increase of the observed polarization by 1 to 4% at distances 10,000 and 1500 km from the nucleus. A rough estimate shows that the polarization in the near nucleus region of Comet Encke is similar to that for the dusty comets. Even after correction the polarization of Comet Encke's dust fan is significantly less that the polarization observed in dusty comets. The reasons influencing the distribution of dust polarization in the coma are discussed. More polarimetric and colorimetric observations of the dust in Comet Encke on its return in 2003 are needed.  相似文献   

5.
We present an overview of the dust coma observations of Comet Tempel 1 that were obtained during the approach and encounter phases of the Deep Impact mission. We use these observations to set constraints on the pre-impact activity of the comet and discuss some preliminary results. The temporal and spatial changes that were observed during approach reveal three distinct jets rotating with a 1.7-day periodicity. The brightest jet produces an arcuate feature that expands outward with a projected velocity of about 12 m s−1, suggesting that the ambient dust coma is dominated by millimeter-sized dust grains. As the spatial resolution improves, more jets and fans are revealed. We use stereo pairs of high-resolution images to put some crude constraints on the source locations of some of the brightest features. We also present a number of interesting coma features that were observed, including surface jets detected at the limb of the nucleus when the exposed ice patches are passing over the horizon, and features that appear to be jets emanating from unilluminated sources near the negative pole. We also provide a list of 10 outbursts of various sizes that were observed in the near-continuous monitoring during the approach phase.  相似文献   

6.
Imaging Borrelly     
The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ∼60° N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation.  相似文献   

7.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

8.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

9.
10.
Boice  D. C.  Soderblom  L. A.  Britt  D. T.  Brown  R. H.  Sandel  B. R.  Yelle  R. V.  Buratti  B. J.  Hicks  Nelson  Rayman  Oberst  J.  Thomas  N. 《Earth, Moon, and Planets》2000,89(1-4):301-324
NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88° to 52°, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images(47–58 m pixel). A smooth, broad basin containing brighter regions and mesa-likestructures is present in the central part of the nucleus that seems to be the source ofjet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger thanabout 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 μm revealed a hot, dry surface consistent with less than about10% actively sublimating. Two types of dust features are seen: broad fans and highlycollimated “jets” in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller “jets” near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dustis rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.  相似文献   

11.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   

12.
Comet 81P/Wild 2 was observed in the thermal infrared over 6 months during its 1997 perihelion passage. The comet was most active in late February, about 3 months preperihelion; dust production declined by a factor of 3 between February and August. For the GIOTTO Halley dust size distribution, maximum dust production rate was ∼2 × 106 g/s. The comet displayed a 10-μm silicate feature about 25% above the continuum, similar to several other Jupiter-family comets, but much lower than that seen in a number of Oort cloud comets.NASA’s STARDUST sample return mission will encounter P/Wild 2 98 days postperihelion in January 2004. Based on our observations at a similar point in the orbit and the Halley size distribution, we predict that the mass fluence on the spacecraft for a 150 km miss distance will be about 8 × 10−6 g/cm2 for particles up to 1 cm in radius. The corresponding areal coverage will be about 10−4.  相似文献   

13.
We present 1- to 5-μm broadband and CVF images of comet Hale-Bopp taken 1997 February 10.5 UT, 50 days before perihelion. All the images exhibit a nonspherical coma with a bright “ridge” in the direction of the dust tail approximately 10″ from the coma. Synthetic aperture spectrophotometry implies that the optically important grains are of a radius ≤0.4 μm; smallest radius for any comet seen to date. The variation of the integrated surface brightness with radial distance from the coma (ρ) in all the images closely follows the “steady state” ρ−1 model for comet dust ablation (Gehrz and Ney, 1992). The near-infrared colors taken along the dust tail are not constant implying the dust grain properties vary with coma distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Dust continuum imaging of comet C/1995 O1 (Hale-Bopp) was carried out with the Swedish Vacuum Solar Telescope (SVST)on La Palma in April, 1997. Images were reduced according to standard procedure, aligned, averaged, navigated and enhanced with azimuthal renormalization, rotational derivative, temporal derivative and unsharp masking processing. The rotational period of the nucleus was determined to 11.5 h and the mean projected dust outflow velocity to 0.41 km s−1. Shell envelopes in the sunward side of the coma were separated by a projected distance of ∼15 000–20 000 km and spiralling inwards towards smaller radii in the direction of local evening. Small scale inhomogeneities of size 1 000–2 000 km, interpreted as correlated with variations in dust emission activity, were seen at radii ≤20 000 km. Two overlapping shell systems with a relative lag angle of ∼55° were evident at the time. The north pole of the nucleus was directed towards the Earth. The dust emission pattern is very complex and may be due to several active areas. The shape of the incomplete spiral shell pattern indicates that the angle between the line-of-sight and the rotational axis of the nucleus was not large. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Hypervelocity impact sputter causes impulses substantially greater than the initial momenta of micro-grains of comet Halley's dust coma, the effective factor being discontinuous at the dust mass (0.2 g) that just penetrates the spacecraft bumper shield. Marginally non-penetrating grains determine the net drag and torque, calculated here for the Giotto shield and exposed components. The torque due to asymmetries induces a precession of the spacecraft axis, whose amplitude is solved for passage through the model dust coma, to find slowly damped oscillations of significant (1°) amplitude.  相似文献   

17.
Extensive observations of comet 260P/McNaught were carried out between August 2012 and January 2013. The images obtained were used to analyze the comet’s inner coma morphology at resolutions ranging from 250 to about 1000 km/pixel. A deep investigation of the dust features in the inner coma allowed us to identify only a single main active source on the comet’s nucleus, at an estimated latitude of ?50°±15°. A thorough analysis of the appearance and of the motion of the morphological structures, supported by graphic simulations of the geometrical conditions of the observations, allowed us to determine a pole orientation located within a circular spot of a 15°-radius centered at RA=60°, Dec=0°. The rotation of the nucleus seems to occur on a single axis and is not chaotic, furthermore no precession effects could be estimated from our measurements. The comet’s spin axis never reached the plane of the sky from October 2012 to January 2013; during this period it did not change its direction significantly (less than 30°), thus giving us the opportunity to observe mainly structures such as bow-shaped jets departing from the single active source located on the comet’s nucleus. Only during the months of August 2012 and January 2013 the polar axis was directed towards the Earth at an angle of about 45° from the plane of the sky; this made it possible to observe the development of faint structures like fragments of shells or spirals. A possible rotation period of 0.340±0.01 days was estimated by means of differential photometric analysis.  相似文献   

18.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

19.
BOEHNHARDT  H.  BIRKLE  K.  FIEDLER  A.  JORDA  L.  THOMAS  N.  PESCHKE  S.  RAUER  H.  SCHULZ  R.  SCHWEHM  G.  TOZZI  G.  WEST  R. 《Earth, Moon, and Planets》1997,78(1-3):179-187
In 1996 comet Hale-Bopp exhibited a porcupine-like coma with straight jets of dust emission from several active regions on the nucleus. The multi-jet coma geometry developed during the first half of 1996. While the jet orientation remained almost constant over months, the relative intensity of the jets changed with time. By using the embedded fan model of Sekanina and Boehnhardt (1997a) the jet pattern of comet Hale-Bopp in 1996 can be interpreted as boundaries of dust emission cones (fans) from four — possibly five — active regions on the nucleus (for a numerical modelling see part II of the paper by Sekanina and Boehnhardt, 1997b). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号