首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   1篇
天文学   9篇
  2009年   1篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有10条查询结果,搜索用时 296 毫秒
1
1.
Imaging Borrelly     
The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ∼60° N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation.  相似文献   
2.
The Plasma Experiment for Planetary Exploration (PEPE) made detailed observations of the plasma environment of Comet 19P/Borrelly during the Deep Space 1 (DS1) flyby on September 22, 2001. Several distinct regions and boundaries have been identified on both inbound and outbound trajectories, including an upstream region of decelerated solar wind plasma and cometary ion pickup, the cometary bow shock, a sheath of heated and mixed solar wind and cometary ions, and a collisional inner coma dominated by cometary ions. All of these features were significantly offset to the north of the nucleus-Sun line, suggesting that the coma itself produces this offset, possibly because of well-collimated large dayside jets directed 8°-10° northward from the nucleus as observed by the DS1 MICAS camera. The maximum observed ion density was 1640 ion/cm3 at a distance of 2650 km from the nucleus while the flow speed dropped from 360 km/s in the solar wind to 8 km/s at closest approach. Preliminary analysis of PEPE mass spectra suggest that the ratio of CO+/H2O+ is lower than that observed with Giotto at 1P/Halley.  相似文献   
3.
Boice  D. C.  Soderblom  L. A.  Britt  D. T.  Brown  R. H.  Sandel  B. R.  Yelle  R. V.  Buratti  B. J.  Hicks  Nelson  Rayman  Oberst  J.  Thomas  N. 《Earth, Moon, and Planets》2000,89(1-4):301-324
NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88° to 52°, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images(47–58 m pixel). A smooth, broad basin containing brighter regions and mesa-likestructures is present in the central part of the nucleus that seems to be the source ofjet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger thanabout 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 μm revealed a hot, dry surface consistent with less than about10% actively sublimating. Two types of dust features are seen: broad fans and highlycollimated “jets” in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller “jets” near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dustis rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.  相似文献   
4.
A study was made of the time development for 31 simple sunspots. The growth and decay rates varied between spots, but were approximately constant during the lifetime of individual, relatively shortlived spots. Long-lived spots showed oscillations in umbral size, with periods of three to five days. Occasionally, rapid changes in the spot size were observed.Analysis completed while a staff member at Sacramento Peak Observatory, Sunspot, NM, U.S.A.  相似文献   
5.
6.
At the hundredth anniversary of the Tunguska event in Siberia it is appropriate to discuss measures to avoid such occurrences in the future. Recent discussions about detecting, tracking, cataloguing, and characterizing near-Earth objects (NEOs) center on objects larger than about 140 m in size. However, objects smaller than 100 m are more frequent and can cause significant regional destruction of civil infrastructures and population centers. The cosmic object responsible for the Tunguska event provides a graphic example: although it is thought to have been only about 50 to 60 m in size, it devastated an area of about 2000 km2. Ongoing surveys aimed at early detection of a potentially hazardous object (PHO: asteroid or comet nucleus that approaches the Earth’s orbit within 0.05 AU) are only a first step toward applying countermeasures to prevent an impact on Earth. Because “early” may mean only a few weeks or days in the case of a Tunguska-sized object or a longperiod comet, deflecting the object by changing its orbit is beyond the means of current technology, and destruction and dispersal of its fragments may be the only reasonable solution. Highly capable countermeasures- always at the ready—are essential to defending against an object with such short warning time, and therefore short reaction time between discovery and impending impact. We present an outline for a comprehensive plan for countermeasures that includes smaller (Tunguska-sized) objects and long-period comets, focuses on short warning times, uses non-nuclear methods (e.g., hyper-velocity impactor devices and conventional explosives) whenever possible, uses nuclear munitions only when needed, and launches from the ground. The plan calls for international collaboration for action against a truly global threat.  相似文献   
7.
Experiences at five pump-and-treatment (P&T) facilities provide three important lessons:
1. To reduce future costs, it is important to use the best hydraulic information possible for designing P&T systems, and to incorporate flexibility to compensate for uncertainties in hydraulic conditions. A phased approach to P&T system construction and hydraulic testing has been successful.
2. In practice, downtimes and maintenance problems result in significant reductions in the average ground water extraction rates. This indicates that operation and maintenance were more difficult than expected and warrant more attention. Furthermore, P&T systems are generally designed to attain the model optimized extraction rates only when the system is in full operation. Designers must recognize that P&T systems have downtimes, and, therefore, the uptime pumping must be sufficient to maintain capture. Generally, P&T systems should achieve model-optimized extraction rates on an average basis rather than only when the system is in full operation.
3. During operation of P&T systems, the average extraction rates should be routinely correlated to capture zone evaluations and included in monitoring reports. The average extraction rates should be compared to the model-derived extraction rates to assess whether the design objectives are being met and should be included in routine monitoring reports to confirm maintenance of pumping rates under which capture has been demonstrated.  相似文献   
8.
The chemistry of both nitrogen and sulfur presents interesting problems in comets.In this paper, we use a model of cometary comae with gas-phase chemical kineticsand gas dynamics to predict molecular abundances in the inner coma region for twoof the brightest comets in the past 20 years, Hyakutake (C/1996 B2) and Hale–Bopp(C/1995 O1). In this progress report we concentrate on the gas-phase chemistry of thenitrogen sulfide (NS) radical at a heliocentric distance of 1 AU to study the abundanceof NS using a detailed photo and chemical reaction network with over 100 species andabout 1000 reactions. The results are compared with recent observations of CometHale–Bopp and reveal that conventional gas-phase reactions schemes do not produceNS in sufficient quantities to explain the observations. We plan to continue therefinement of the model to improve agreement with observational constraints.  相似文献   
9.
The flyby of the nucleus of the Comet 19P/Borrelly by the Deep Space 1 spacecraft produced the best views to date of the surface of these interesting objects. It transformed Borrelly from an astronomical object shrouded in coma of gas and dust into a geological object with complex surface processes and a rich history of erosion and landform evolution. Based on analysis of the highest resolution images, stereo images, photometry, and albedo we have mapped four major morphological units and four terrain features. The morphological units are named dark spots, mottled terrain, mesas, and smooth terrain. The features are named ridges, troughs, pits, and hills. In strong contrast to asteroids, unambiguous impact craters were not observed on Borrelly's surface. Because of the relatively short period of this comet, surface erosion by volatile sublimation is, in geologic terms, a very active process. The formation and the morphologies of units and features appear to be driven by differential rates of sublimation erosion. Erosional rates across the comet are probably controlled by solar energy input and the location of the subsolar point during perihelion. Differences in energy input may produce different varieties of sublimation erosional landforms. The terrains on Borrelly suggest that solar energy input could map directly into erosional processes and landforms.  相似文献   
10.
The ratio of CH4/CO in comets is an important indicator of the region of their formation. However, it is difficult to measure the quantity of CH+. The Giotto Ion Mass Spectrometer experiment observed a quantity of CH+ which seemed inconsistent with the amount of CH+. Thus, it was proposed that a source of the CH+ was a distributed source in the dust. We tested this hypothesis by observing the CH emission strength in comet Hale-Bopp as a function of dustiness. We see no strong correlation between the dust and the gas. Thus, for Hale-Bopp,dust is unlikely to be a dominant source of CH. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号