首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
The dissolution kinetics of shallow water marine carbonates (low-Mg calcite, aragonite and Mg-calcites) were investigated in seawater (S = 35) at 25°C and a PCO2 of 10?2.5 atm. using the pH-stat method. Carbonate dissoluton rates (μmoles g?1 hr?1) fit the empirical kinetic expression, R = k(1 - Ω)n, where R = dissolution rate, k = rate constant, Ω = saturation state, and n = order of reaction. Reaction orders were near 2.9 for low-Mg calcites, 2.5 for aragonites and 3.4 for Mg-calcites.The rate constant, k, expressed as μmoles g?1 hr?1, varied by nearly a factor of ten for the different samples, reflecting differences in amount of reactive surface area. Reactive surface area of the biogenic phases ranged from 0.3% to 66% of the total surface area determined by the BET gas adsorption method. The discrepancy between reactive and total surface area was greatest for samples with high BET surface areas (> 1 m2 g?1) and delicate microstructures.Relative dissolution rates of the various biogenic carbonates as a function of seawater calcium carbonate ion molal product (IMP) were related to both mineral stability and grain microstructure. In seawater undersaturated with respect to aragonite, finely crystalline aragonites dissolved more rapidly than thermodynamically less stable high Mg-calcites (15–18 mole% MgCO3) with lower reactive surface areas. Therefore, under certain conditions, differences in grain microstructural complexity can override thermodynamic constraints and lead to selective dissolution of a thermodynamically more stable mineral phase.  相似文献   

2.
The growth, morphology, and chemical composition ofHydrilla verticillata, Myriophyllum spicatum, Potamogeton perfoliatus, andVallisneria americana were compared among different salinity and light conditions. Plants were grown in microcosms (1.2 m5) under ambient photoperiod adjusted to 50% and 8% of solar radiation. The culture solution in five pairs of tanks was gradually adjusted to salinities of 0, 2, 4, 6, and 12‰. With the exception ofH. verticillata, the aquatic macrophytes examined may be considered eurysaline species that are able to adapt to salinities one-third the strength of sea water. With increasing salinity, the inflorescence production decreased inM. spicatum andP. perfoliatus, yet asexual reproduction in the latter species by underground buds remained constant. Stem elongation increased in response to shading inM. spicatum, while shadedP. perfoliatus had higher concentrations of chlorophylla. In association with high epiphytic mass, chlorophylla concentrations in all species were greatest at 12‰. The concentration of sodium increased in all four species of aquatic macrophytes examined here, indicating that these macrophytes did not possess mechanisms to exclude this ion. The nitrogen content (Y) of the aquatic macrophytes tested increased significantly with higher sodium concentration (X), suggesting that nitrogen may be utilized in osmoregulation (Y = X × 0.288 + 6.10, r2 = 0.71). The tolerance ofV. americana andP. perfoliatus to salinity was greater in our study compared to other investigations. This may be associated with experimental methodology, whereby macrophytes were subjected to more gradual rather than abrupt changes in salinity. The two macrophytes best adapted to estuarine conditions in this study by exhibiting growth up to 12‰, includingM. spicatum andV. americana, also exhibited a greater degree of response in morphology, tissue chemistry (including chlorophyll content and total nitrogen), and reproductive output in response to varying salinity and light conditions.  相似文献   

3.
Species of submerged aquatic vegetation (SAV) are frequently used in the management of estuarine systems to set restoration goals, nutrient load reduction goals, and water quality targets. As human need for water increases, the amount of freshwater required by estuaries has become an increasingly important issue. While the, science of establishing the freshwater needs of estuaries is not well developed, recent attempts have emphasized the freshwater requirements of fisheries. We evaluate the hypothesis that SAV can be used to establish freshwater inflow needs. Salinity tolerance data from laboratory and field studies of SAV in the Caloosahatchee estuary, Florida, are used to estimate a minimum flow required to maintain the salt-tolerant freshwater species,Vallisneria americana, at the head of the estuary and a maximum flow required to prevent mortality, of the marine speciesHalodule wrightii at its mouth. ForV. americana, laboratory experiments showed that little or no growth occurred between 10‰ and 15‰ In the field, lower shoot densities (<400 shoots m?2) were associated with salinities greater than 10‰. Results forH. wrightii were more variable than forV. americana. Laboratory experiments indicated that mortality could occur at salinities <6‰, with little growth occurring between 6‰ and 12‰. Field data indicated that higher blade densities (>600 blades m?2) tend to occur at salinities greater than 12‰ Relationships between salinity in the estuary and discharge from the Caloosahatchee River indicated that flows>8.5 m3 s?1 would produce tolerable salinity (<10‰) forV. americana and flows<89 m3 s?1 would avoid lethal salinities (<6‰) forH. wrightii.  相似文献   

4.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

5.
The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.In this contribution,we firstly report detailed study of geochemistry,isotopic and geochronology of well preserved samples of the Gouap BIFs collected from diamond drillcores.The Gouap BIFs consist mainly of amphibole BIFs and amphibole-pyrite BIFs characterized by dominant Fe2O3+SiO2contents and variable contents of CaO,MgO and SO3,consistent with the presence of amphibole,chlorite,epidote and pyrite,formed during amphibolite facies metamorphism and overprinted hydrothermal event.The amphibole–pyrite BIFs are typically enriched in trace and rare earth elements(REE)compared to the amphibole BIFs,suggesting the influence of detrital materials as well as secondary hydrothermal alteration.The Post Archean Australian Shale(PAAS)-normalized REE–Y profiles of the Gouap BIFs display positive La,Eu anomalies,weak negative Ce anomalies,indicating a mixture of low-temperature hydrothermal fluids and relatively oxic conditions probably under relative shallow seawater.We present here the first isotopic data of BIFs within the Ntem Complex.Theδ30SiNBS28values of the quartz from the Gouap BIFs vary from-1.5‰to-0.3‰and from-0.8‰to-0.9‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.The quartz hasδ18OV-SMOW values of 6.8‰–9.5‰(amphibole BIFs)and 9.2‰–10.6‰(amphibole–pyrite BIFs).The magnetite from the Gouap BIFs showsδ18O values ranging from-3.5‰to-1.8‰and from-3‰to-1.7‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.Moreover,the pyrite grains in the amphibole–pyrite BIFs displayδ34S values of 1.1‰–1.8‰.All isotopic data of the Gouap BIFs confirm that they might have precipitated from low-temperature hydrothermal fluids with detrital input distant from the volcanic activity.According to their geochemical and isotopic characteristics,we propose that the Gouap BIFs belong to the Superior type.In situ U–Pb zircon dating of BIFs was conducted to assess the BIF depositional age based on strong evidence of zircon in thin section.The Gouap BIFs were probably deposited at 2422±50 Ma in a region where sediments extended from continental shelf to deep-water environments along craton margins like the Caue Formation of the Minas Supergroup,Brazil.The studied BIFs have experienced regional hydrothermal activity and metamorphism at 2089±8.3 Ma during the Eburnean–Transamazonian orogeny.These findings suggest a physical continuity between the protocratonic masses of both Sao Francisco and Congo continents in the Rhyacian Period.  相似文献   

6.
The lower Neuse River Estuary is a temperate mesohaline system which forms the major southern tributary of Pamlico Sound, North Carolina. The crustacean zooplankton of this well-mixed system were sampled for a 20-month period from May 1988 through December 1989. A submersible pump was used to sample both the entire water column and the sediment surface. Seasonal dominants included the calanoid copepodsAcartia tonsa andParacalanus crassirostris in summer, the cyclopoid copepodOithona colcarva in fall, the cladoceranPodon polyphemoides in winter, and harpacticoid copepods in spring. Non-naupliar biomass over the study period consisted of 38.8%A. tonsa, 7.7%P. crassirostris, 21.2%O. colcarva 23.6% harpacticoid copepods, and 6.0% cladocerans. The remainder of the biomass consisted ofPseudodiaptomus coronatus and barnacle nauplii. Mean total copepod densities ranged from 600 m?3 in May 1988 to 180,000 m?3 in August 1988. Mean copepod densities for 1989 were 25,000 m?3. Maximum densities during both years occurred during summer, with subsequent descreases throughtout the year until early spring. Abundances of total copepods, and ofAcartia tonsa in particular, were significantly correlated with water temperature, but with neither chlorophylla, phytoplankton productivity, nor any of an array of other physical or chemical variables. Regression analyses using data from this investigation, and supported by results from other regional studies, indicate that water temperature is likely the single most important variable predicting zooplankton temporal abundance in North Carolina estuaries.  相似文献   

7.
In many southern California salt marshes, increased freshwater inflows have promoted the establishment of exotic plant species. A comparative study showed that a native, perennial, high marsh dominant,Salicornia subterminalis, and an invasive, exotic annual grass,Polypogon monspeliensis, responded differently to soil salinity and saturation.Salicornia subterminalis seeds and young plants were more salt tolerant, and the native grew best at high salinities (23 g 1?1 and 34 g 1?1) in greenhouse experiments. In contrast, the exotic had reduced growth at high salinities relative to nonsaline controls. The native,S. subterminalis, grew poorly as the duration of soil saturation increased from 2 wk to 32 wk, butP. monspeliensis grew equally well for all durations tested. The response ofS. subterminalis andP. monspeliensis to increased salinity indicated that salt applications might be used to protect native vegetation in salt marshes where salt-sensitive exotics are a problem. A field experiment verified that a salt application of 850 g m?2 mo?1 for 3 mo was sufficient to control the exotic, while not noticeably affecting the native. Thus, salt applications may be a practical method for controllingP. monspeliensis invasions in areas receiving urban runoff or other unwanted freshwater inflows.  相似文献   

8.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

9.
The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc rocks that formed during the closure of the Paleo-Tethys, indicating these arc rocks were the source of the metals in the deposit. Taking into account our new observations and data, as well as regional Pb–Zn metallogenic processes, we present here a new model for MVT deposits controlled by karst structures in thrust–fold systems.  相似文献   

10.
Crabs (Grapsidae,Sesarma) are the dominant macrofaunal group of mangrove forest soils in northern Australia. Little is known about the ecology of these crabs or the factors that influence their distribution in mangrove forests. Pitfall traps were used to sample grapsid crabs in the Murray River estuary in north Queensland. Sampling was conducted at five sites along a salinity gradient from <1‰ at upstream sites to >35‰ at the river mouth. At each site, trapping was done in both low and high intertidal forests. We characterized the sediments at each site by measuring percent sand, silt, clay and organic matter, Eh, pH, and soil pore-water salinity. Four species of grapsids dominated the crab fauna along the Murray River (Sesarma semperi-longicristatum, S. messa, S. brevicristatum, andS. brevipes). Distinct zonation patterns were found along the salinity gradient and between high and low intertidal forests.S. messa was dominant in high intertidal, downstream forests, high and low intertidal forests in the middle to downstream portion of the river, and in low intertidal forests in the central reach of the river.S. brevipes was dominant in both low and high intertidal zone forests at low salinity upstream sites.S. brevicristatum was most abundant in the central reaches of the river and only in the high intertidal zone.S. semperi-longicristatum was found only in the low intertidal zone, downstream forest. Subsequently, tests of salinity tolerances of these crabs were carried out in the laboratory. These indicated very wide tolerances over salinities from completely fresh to hypersaline (60‰). The osmoregulatory abilities of the crabs were also found to vary. However, neither their salinity tolerance nor osmoregulatory ability adequately explain the zonation patterns were measured in the field. For example,S. brevicristatum had the most restricted distribution, but it had the second broadest salinity tolerance and osmoregulatory ability. Sediment characteristics explained a significant amount of the variation in abundance for two of the crab species. Pore-water salinity provided no explanatory power for any of the species. Individual species abundances are probably influenced by additional factors such as interspecific competition and predation.  相似文献   

11.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

12.
Greenstone belts contain several clues about the evolutionary history of primitive Earth. Here, we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block, named the Northern Mundo Novo Greenstone Belt (N-MNGB), and present data collected with different techniques, including U–Pb–Hf–O isotopes of zircon and multiple sulfur isotopes (32S, 33S, 34S, and 36S) of pyrite from this supracrustal sequence. A pillowed metabasalt situated in the upper section of the N-MNGB is 3337 ± 25 Ma old and has zircon with εHf(t) =  ?2.47 to ?1.40, Hf model ages between 3.75 Ga and 3.82 Ga, and δ18O = +3.6‰ to +7.3‰. These isotopic data, together with compiled whole-rock trace element data, suggest that the mafic metavolcanic rocks formed in a subduction-related setting, likely a back-arc basin juxtaposed to a continental arc. In this context, the magma interacted with older Eoarchean crustal components from the Gavião Block. Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks, in accordance with previous studies, yielding a maximum depositional age of 3353 ± 22 Ma. These detrital zircons have εHf(t) =  ?5.40 to ?0.84, Hf model ages between 3.66 Ga and 4.30 Ga, and δ18O = +4.8‰ to +6.4‰. The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling. The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs. Significantly, they preserve the signal of the anoxic Archean atmosphere, expressed by MIF-S signatures (Δ33S between ?1.3‰ to +1.4‰) and a Δ36S/Δ33S slope of ?0.81 that is indistinguishable from the so-called Archean array. A BIF sample has a magmatic origin of sulfur, as indicated by the limited δ34S range (0 to +2‰), Δ33S ~ 0‰, and Δ36S ~ 0‰. A carbonaceous schist shows positive δ34S (2.1‰–3.5‰) and elevated Δ33S (1.2‰–1.4‰) values, with corresponding negative Δ36S between ?1.2‰ to ?0.2‰, which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur. The pillowed metabasalt displays heterogeneous δ34S, Δ33S, and Δ36S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration. Lastly, pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide, which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.  相似文献   

13.
Palaeotemperature estimates from the oxygen‐isotope compositions of belemnites have been hampered by not knowing ancient seawater isotope compositions well enough. We have tackled this problem using Mg/Ca as a proxy for temperature and here, we present a ~2 Ma record of paired Mg/Ca and δ18O measurements of Jurassic (Early Pliensbachian) belemnites from the Asturian basin as a palaeo‐proxy of seawater oxygen‐isotope composition. From the combined use of the two approaches, we suggest a δ18Ow composition of about ?0.1‰ for the Jamesoni–Ibex zones. This value may have been increased by about 0.6‰ during the Davoei Zone due to the effect of waters with a different δ18Ow composition. These findings illustrate the inaccuracy of using a globally homogeneous ice‐free value of δ18Ow = ?1‰ for δ18Ocarb‐based palaeotemperature reconstructions. Our data suggest that previous palaeotemperatures calculated in the region from δ18O values of belemnites may have been underestimated as the seawater oxygen isotopic composition could have been higher.  相似文献   

14.
Five stations on the lower Saint John River, a complex multibasin estuary, were sampled semiquantitatively for zooplankton at biweekly intervals for one year, and qualitatively over a 4-year period. Planktonic Crustacea were dominated by the true estuarine copepods,Acartia tonsa andEurytemora affinis and the euryhaline marine copepodsOithona similis andPseudocalanus minutus. Atypical estuarine forms, confined to a lower fiord-like basin with salinity of 20‰, were the amphipod,Parathemisto abyssorum and the mysidErythrops erythrophthalma. River flows were highly variable from year to year. Certain basins function as lakes in some years and estuaries in other years, causing extreme zooplankton community fluctuations, and succession patterns dependent on salinity rather than season. On occasion freshwater zooplankters maintained viable populations at unusually high salinities (ca. 5‰). Vertical and horizontal distributions of zooplankters indicate that the estuary in fact comprises two systems: a true estuary in the upper reaches and the surface waters at the lower end, and a fiord in a subsidiary basin in the lower end.  相似文献   

15.
The brown shrimp,Farfantepenaeus aztecus, is the major component of the Gulf of Mexico shrimp fishery, and it is critical that we understand its environmental requirements. Brown shrimp spend a large portion of their post-larval (PL) and juvenile life within estuaries distributed along salinity gradients and yet our understanding of the salinity tolerance of various age groups is limited. A series of 48-hr bioassays were conducted in which various ages ofF. aztecus (PL-10, PL-13, PL-15, PL-17, PL-20, and PL-23) were acclimated from a salinity of 26‰ to 1‰, 2‰, 4‰, 8‰, 12‰, and 26‰ in order to determine their tolerance to these salinities. Finally, PL-80.F. aztecus were transferred directly from 25‰ to 2‰, 4‰, and 8‰ waters to study the effects of rapid salinity reductions on juvenile survival. Survival of 10-and 13-day-old PLs was significantly, different from the control (26‰) for all salinities tested. Survival of PL-15 shrimp and older was significantly lower than survival of the controls at 1‰ and 2‰ but similar to the control at all other salinities tested. A 4-wk growth trial was conducted with juvenile shrimp at 2‰, 4‰, 8‰, and 12‰. There was no significant difference in survival among treatments, although shrimp maintained at 8‰ and 12‰ grew significantlymore than shrimp maintained at 2‰ and 4‰. There was no growth difference between shrimp at the two low salinities or between shrimp at the two high salinities. Survival of juveniles transferred directly from 25‰ to various salinities were 100% at 25‰, 94.2% at 8‰, 67.3% at 4‰, and 63.5% at 2‰. These results suggest that PL-13 and younger brown shrimp would have a better chance of survival by delaying entry into estuaries susceptible to rapid salinity declines. The brown shrimp juveniles would, be more densely distributed in areas with salinities greater than 4‰ than in salinities less than 4‰. Although food availability, and bottom type also affect shrimp distribution survival and growth, salinity may also greatly affect the shrimp and its fishery.  相似文献   

16.
The density and compressibility of seawater solutions from 0 to 95 °C have been examined using the Pitzer equations. The apparent molal volumes (X = V) and compressibilities (X = κ) are in the form $$ X_{\phi } = \bar{X}^{0} + A_{X} I/(1.2 \, m)\ln (1 + 1.2 \, I^{0.5} ) + \, 2{\text{RT }}m \, (\beta^{(0)X} + \beta^{(1)X} g(y) + C^{X} m) $$ where $ \bar{X}^{0} $ is the partial molal volume or compressibility, I is the ionic strength, m is the molality of sea salt, AX is the Debye–Hückel slope for volume (X = V) or adiabatic compressibility (X = κ s), and g(y) = (2/y 2)[1 ? (1 + y) exp(?y)] where y = 2I 0.5. The values of the partial molal volume and compressibility ( $ \bar{X}^{0} $ ) and Pitzer parameters (β (0)X , β (1)X and C X ) are functions of temperature in the form $$ Y^{X} = \sum_{i} a_{i} (T-T_{\text{R}} )^{i} $$ where a i are adjustable parameters, T is the absolute temperature in Kelvin, and T R = 298.15 K is the reference temperature. The standard errors of the seawater fits for the specific volumes and adiabatic compressibilities are 5.35E?06 cm3 g?1 and 1.0E?09 bar?1, respectively. These equations can be combined with similar equations for the osmotic coefficient, enthalpy and heat capacity to define the thermodynamic properties of sea salt to high temperatures at one atm. The Pitzer equations for the major components of seawater have been used to estimate the density and compressibility of seawater to 95 °C. The results are in reasonable agreement with the measured values (0.010E?03 g cm?3 for density and 0.050E?06 bar?1 for compressibility) from 0 to 80 °C and salinities from 0 to 45 g kg?1. The results make it possible to estimate the density and compressibility of all natural waters of known composition over a wide range of temperature and salinity.  相似文献   

17.
The metabolic rate of individual habitats can differ significantly in their contribution to the total system productivity of estuaries. Changing environmental conditions such as those created by tidal exchange can frequently alter these rates. In an effort to quantify these rate responses, metabolic rates were measured for macroalgal and sediment habitats at different salinities. Microcosms representing the two habitats were incubated at three salinity ranges (high: 25 to 31‰; moderate: 12 to 18‰; and low: 0 to 4‰) and production and respiration rates were estimated. The production rates for both habitats were proportional to the salinity of the water in the incubation, with the lowest metabolic rates associated with the lowest salinity. Average macroalgal habitat net production rates were 879 mg O2 m?2 h?1, 609 mg O2 m?2 h?1, and 451 mg O2 m?2 h?1 at high, moderate, and low salinity treatments, respectively, and the dark respiration rates were ?401 mg O2 m?2 h?1, ?341 mg O2 m?2 h?1, and ?333 mg O2 m?2 h?1. Average sediment habitat net production rates were 60 mg O2 m?2 h?1, 13 mg O2 m?2 h?1 and 10 mg O2 m?2 h?1 and the respiration rates were ?114 mg O2 m?2 h?1, ?55 mg O2 m?2 h?1, and ?31 mg O2 m?2 h?1 at high, moderate, and low salinity treatments. The larger contribution of macroalgal habitats to system metabolism may account for observed diurnal changes in water column oxygen levels in some estuaries. Macroalgal production rates explained 83% of the increase in water column oxygen levels during daylight hours and macroalgal respiration rates explained 65% of the decline in oxygen levels during the night. The contribution of macroalgal metabolism to the system can be influenced by even short-term changes in water column salinity. Environmental processes that alter salinity levels on hourly time scales may moderate the effect of macroalgal metabolism on oxygen levels.  相似文献   

18.
Significant boron isotope fractionation occurs in nature (?70 ‰ to +75 ‰) due to the high geochemical reactivity of boron and the large relative mass difference between 10B and 11B. Since the 1990s, reconstruction of ancient seawater pH using the isotopic composition of boron in bio-carbonates (δ 11Bcarb), and then calculation of the past pCO2 have become important issues for the international isotope geochemistry community, and are called the δ 11B-pH proxy. Although many achievements have been made by this proxy, various aspects of boron systematics require rigorous evaluation. Based on the previous researches, mechanism of boron isotope fractionation, variation of boron isotope (δ 11B) in nature (especially in bio-carbonates) and controlling factors of the δ 11B-pH proxy, such as the dissociation constant of B(OH)3 in seawater (pKa), the δ 11B of seawater (δ 11BSW), the boron isotopic fractionation factor between B(OH) 4 ? and B(OH)3 (α 4–3), and the incorporated species of boron into bio-carbonates, are reviewed in detail and the research directions of this proxy are proposed. Generally, the controversy about pKa, δ 11Bsw, and α 4–3 is relatively less, but whether boron incorporated into bio-carbonates only in the form of B(OH) 4 ? remains doubtful. In the future, it is required that the physicochemical processes that control boron incorporation into carbonates be rigorously characterized and that the related chemical and isotopic fractionation be quantified. It is also necessary and important to establish a “best-fit empirically equation” between δ 11Bcarb and pH of seawater based on the precipitation experiments of inorganic or culture experiments of corals or foraminifera. In addition, extended application of the δ 11B-pH proxy to the earlier part of the Phanerozoic relying on the Brachiopods is worthy of studying. Like other geochemical indicators, there are limiting factors of δ 11B; however, it remains a very powerful tool in the reconstruction of past seawater pH at present.  相似文献   

19.
《Applied Geochemistry》1997,12(3):305-319
An analysis of the S and O isotopic compositions and concentrations of dissolved S04 in river-and lake-water from 7 major catchments of the North and South Islands, New Zealand, allows the distinction between natural (geological, geothermal and volcanic) and anthropogenic S sources.The Buller and the Wairau, relatively pristine rivers in the South Island, show two end-member mixing between34S- and18O-rich rain-water S04 (relatively enriched isotope values) and relatively depleted S04 from oxidation of bedrock sulfide. Tertiary sediments contribute the isotopically most depleted S (down to δ34SCDT−15‰) to the river-water S04, whereas Mesozoic greywacke contributes S with slightly positive δ34S values. River-water S04δ18OSMOW values range from 0 to + 5‰ most probably depending on the micro-environment of the oxidising zone. South Island rivers with S04δ34S> + 5‰ have low S04 concentrations (< 3 mgl−1) and are dominantly composed of rain-water S04 which is principally sea-water derived. In the North Island, the Hutt River S04 samples also lie on an isotopic mixing trend from “greywacke bedrock” to rain-water S04, the latter with δ34S and δ18O values up to + 16 and + 6‰ respectively and a So4/SO4 + Cl fraction of 0.15 (sea-water is 0.12. Although dominated by greywacke, some samples in the Wairarapa area have relatively enriched δ18Sand δ34S values and elevated S04 concentrations (up to 16 mgl), together with higher SO4/SO4 + Cl fraction ratios. This suggests input of fertilizer S04 (δ34S+ 17.2‰andδ18O+ 12.7‰) in the rivers of this agricultural area. The fertilizer loading of the Ruamahanga river can be estimated by its graphical offset from a deduced baseline for bedrockrainfall derived S04 on a S versus O isotope plot. The fertilizer loading represents about 20% of the S04 in the river. Extrapolation of this figure to the annual river discharge indicates that approximately 18% of the amount applied within the catchment is lost to the river.The source of the Whangaehu river is the Ruapehu crater lake (active volcano) with high S04 concentrations and very enriched S04 isotopic signatures (δ34S> + 17‰andδ18O> + 12‰). Downstream this water is diluted by tributaries with lower S04 concentration and isotope signatures of Tertiary sediments similar to the rivers in the South Island. Both geothermal and rain-water S04 inputs to the streams flowing into Lakes Taupo and Rotorua were identified isotopically; in particular waters flowing out from Lake Rotorua have a higher geothermal derived S04 content than the inflows, indicating that there must be a considerable underwater geothermal input to the lake.  相似文献   

20.
Holocene beachrocks of Northeast Brazil are composed predominantly of quartz (90%) with minor carbonate fragments (6% algal detritus) and feldspars (4%). The cement shows three textural varieties: (1) calciferous, surrounding siliciclastic grains; (2) micritic, with an acicular fringe; and (3) cryptocrystalline calcite in pores. Sandstone structures and composition show evidence of submerged and low-energy beaches. Cement is formed by ~20 mol% MgCO3; the δ13C in cement ranges from ?1.3‰ to +3.5‰ PDB and δ18O varies from ?2.1 to +1.2‰PDB. The cement was precipitated under high CO2 pressure, as a result of the interaction of CaCO3? saturated seawater and nonsaturated groundwater, in a beach environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号