首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Solar and lunar geomagnetic tides inH at Alibag have been determined by spectral analysis of discrete Fourier transforms following the method of Black and the well-known Chapman-Miller method. The seasonal variation inL 2(H) is opposite to that inL 2(D) with maximum in thed season and minimum in thej season. In bothH andD the enhancement due to sunspot activity is larger in lunar tide than in solar tide. Surprisingly, the enhancement due to magnetic activity is greater inL 2(H) than inS 1(H), while the contrary is true for declination. It is inferred that there is a local time component of the storm time variation contrary to the view expressed by Green and Malin. The enhancements in amplitudesL 2 andS 1 inH andD, due to sunspot activity and due to magnetic activity, have been separated. The results show that the amplitude at zero sunspot number increases with magnetic activity in all the four parameters, while the enhancement due to sunspot activity at different levels of magnetic activity decreases with increase ofK p. But if bothK p andR are increasing, whenK p increases enhancement due toR decreases and whenR increases enhancement due toK p decreases.  相似文献   

2.
Summary Lunar and luni-solar geomagnetic components have been computed upto four harmonics for low latitude station Alibag, outside equatorial electrojet belt, and the equatorial electrojet stations Annamalainagar, Kodaikanal and Trivandrum in the south Indian region. The computations are confined to data of very high solar activity period 1958–61. Amplitudes of lunar semidiurnal component (L 2), in the horizontal intensity (H), undergo an equatorial enhancement. Phase difference of 2 hrs is noticed inL 2 (H) between nonelectrojet and electrojet stations. In the vertical intensity (Z), L 2 is maximum ine andj-seasons at Trivandrum, close to the magnetic equator. Ind-season, however, maximumL 2 (Z) occurs at Annamalainagar (dip 5°.4N). The phase difference between the electrojet and nonelectrojet stations observed inL 2 (H) is not noticed inL 2 (Z). The differential vertical upward drift motion of charged particles may explain the observed phase difference inL 2 (H). Seasonal variations in amplitudes and times of maxima are noticed at all the stations inL 2 (H) andL 2 (Z). Similar variation is also noticed at Alibag inL 2 of declination (D).  相似文献   

3.
Summary The sunspot cycle variation of the amplitude of the solar magnetic variation has been investigated for magnetically moderate, quiet and disturbed days at Istanbul for the period 1949–1968, and fairly good linear relationship has been found forZ andD components of the earth's magnetic field. In some cases, it is rather difficult to say that there is any linear relationship between sunspot number and the amplitude of theH component of the earth's magnetic field. Meanwhile,K indices has also been considered with sunspot number by means of multiple regression analysis to overcome some uncertainties in this investigation.  相似文献   

4.
Summary The lunar semidiurnal variation of ionospheric absorption at Freiburg and of thef 0 F2 at, Genova, Freiburg and Léopoldville has been deduced. The results are compared with those obtained by other Authors. Magnetic dip, rather than geomagnetic latitude, is found to be a parameter controlling the morphology of the lunar semidiurnal variation of theF2 layer. Finally, a graphical representation of the amplitude of lunar semidiurnal variation off 0 F2 as function of the magnetic dip is also given.
Riassunto Viene determinata la variazione lunare semidiurna dell'assorbimento ionosferico per Friburgo e della frequenza critica dello stratoF2 per Genova, Friburgo, Léopoldville. I risultati sono confrontati con quelli ottenuti da altri Autori per varie stazioni situate in diverse parti del globo. In particolare si trova che la inclinazione magnetica, meglio della latitudine geomagnetica, è il parametro che regola la morfologia della variazione lunare inF2. Infine si dà una rappresentazione grafica dell'ampiezza della variazione lunare dellaf 0 F2 come funzione dell'inclinazione magnetica.


This research was supported by a grant from the Committee on Lunar Variation (IAGA). The paper has been presented at the XII-Assembly of the I.G.G.U. in Helsinki (July–August 1960).  相似文献   

5.
Summary The correlation between the sunspot cycle and the sporadicE-layer ionization is investigated at middle latitudes. Higher mean values off 0Es occur generally with higher sunspot numbers. Some evidence for a phase-shift between long term time-variation in sunspot numbers andf 0Es is obtained. The solar cycle variation ofEs is somewhat larger over the Far East. Regarding the behaviour of the time-development ofEs events in diurnal variation, an interpretation is proposed.  相似文献   

6.
Summary The article describes lunar daily magnetic variation inH, D andZ components of the earth's magnetic field at Istanbul. Maximum occurs at 10.03 l.hr. (lunar hour) in theH component, 3.38 l.hr. in theD and 2.15 l.hr. in theZ component, during the period 1949 to 1968. Also, the seasonal variation of the lunar magnetic variation has been determined and it is seen that the variation of the phase inD andZ are opposite from the phase of the lunar variation inH, and the amplitudes of the lunar variation inH, D andZ are greatest during the northern solstice.  相似文献   

7.
The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.  相似文献   

8.
长江下游地区地震的日月周期性   总被引:1,自引:0,他引:1       下载免费PDF全文
杜品仁  李起彤 《地震地质》1992,14(2):157-164
根据重力固体潮理论值公式,计算长江下游地区地震(M_s≥5.0,1900~1990)的各位相值,按Schuster检验和χ2检验进行判定,发现该地区的地震具有下述非随机的月亮和太阳的周期性:(1)半日周期,表现为太阳时角变化的半周期(P_R=0.023,χ2=7.576)和半日固体潮周期(P_R=0.017,χ2=8.167);(2)半月周期,表现为半个朔望月周期(P_R=0.011,χ2=8.985)和双周潮周期(P_R=0.061,χ2=5.588);(3)对M_s≥5.1地震,还显示出1年的周期,太阳黄经的P_R=0.035,χ2=6.712。对M_s≥5.2地震,还存在半个月球近地点黄经变化周期(P_R=0.043,χ2=6.309)。  相似文献   

9.
本文根据1961-1971年我国五个地磁台北向强度的资料,采用长期变化二次项的残差ΔX,讨论了我国境内太阳活动周期的地磁效应。结果表明,各台ΔX的变化与太阳黑子数平均为11年周期有关,其相关系数平均为-0.77;ΔX的变幅随纬度的增高而有所  相似文献   

10.
The last of a cycle of three papers aimed at searching for the influence of the gravitational tide on regional Greece seismicity using different techniques is presented. Twenty-five nonintersecting samplings of earthquakes in Greece compiled from events with different energy and time intervals were studied in the two previous papers (Desherevskii and Sidorin, 2012d, 2014). Stable diurnal and semidiurnal periodicities (24:00 and 12:00 h) were revealed in the seismicity spectra. Periodicities with a small amplitude with periods close to M2 and O1 tidal waves were also found in some samples. The correlation coefficients of all time series of earthquakes were calculated with the following theoretical tide parameters: volume deformation, strain rate, of strain rate modulus, and smoothed diurnal tidal amplitude. As the main result, stable significant correlation of seismicity was revealed with some tidal parameters. However, this could be the result of coincidence in periods of sub-harmonics of the diurnal seismicity rhythm with solar tidal waves. This means that the discovered correlation could simply be caused by the coincidence of two regular components in variations of the compared processes, but not with the gravitational tide. Correlations of seismic activity with solar and lunar tides are studied separately in this paper. This makes possible to separate the influence of gravitational and nongravitational factors. Strong correlation of seismicity was observed only with the solar tide. No stable correlation of seismicity with the lunar tide was revealed. The results can be considered evidence for the nongravitational origin of seismic activity variations that correlate with the tidal parameters. This means that tidal seismicity variations, if they are real, should have a much smaller amplitude in comparison with diurnal solar variations of nongravitational origin. Similar effects could cause wrong conclusions on the tidal influence on seismicity in some studies.  相似文献   

11.
Summary The mean monthly noon critical frequencies of theE andF1 layers of the ionosphere at a number of stations in different latitudes and their variation with sunspot number have been studied in this paper. It is found that while theE layer approximates to a chapman region, theF1 layer is markedly affected by other agenices, somewhat similar toF2. In high sunspot years,foF1 shows two maxima at middle latitudes with a minimum at the equator.  相似文献   

12.
Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of v2 · Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with v2 and Bs separately we find that, during the declining phase of the solar cycle, v2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28–28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.  相似文献   

13.
Summary The existence of temperature gradients and temperature variations in the heigh atmosphere change in a big rate the linear dependence between the variation of the maximal electron production in theF1 layer and the relative sunspot number is shown. The variations of the intensity of the ionizing source extremely with the increase of the solar activity. In order to obtain sensible data is necessary to use only the mean of the penetration frequency ofF1 layer in the midday hours of the summer season.  相似文献   

14.
Lunar and solar atmospheric tidal oscillations have been determined with reasonable accuracy from a ten-year record of hourly mercury-barometer readings, corrected to mean-sea-level, at Rarotonga (Cook Islands), 21.2°S. For the lunar semidiurnal tide, the annual determination shows an amplitude (56 b) slightly lower and a phase (51°) much smaller than the values (58 b, 72°) that would be derived, for the position of Rarotonga, from the spherical harmonic analysis given byHaurwitz andCowley (1969). The seasonal variation of this oscillation, as given by the monthly and J, E, D values, shows most of the characteristic features found in world-wide determinations. In particular, the near equality of the J, D amplitudes at Rarotonga tends to support theHaurwitz andCowley (1969) suggestion of negative J-D values in southern middle latitudes. For the solar tides, the semidiurnal and terdiurnal oscillations at Rarotonga are similar to those found at other stations in the south-west Pacific region. However, for the diurnal oscillation, the annual amplitude (232 b) is only about half the value (465 b) indicated for the position of Rarotonga by the world maps of theS 1(p) annual harmonic coefficients given byHaurwitz (1965). It thus seems likely that the relatively small area of lowS 1(p) annual amplitude in the eastern part of the south Pacific, as indicated by these maps, is much more extensive than formerly supposed.  相似文献   

15.
Data from three solar observatories (Learmonth, Holloman, and San Vito) are used to study the variations in the average number of sunspots per sunspot group. It is found that the different types of sunspot groups and the number of sunspots in these groups have different solar cycle and cycle to cycle variations. The varying ratio between the average number of sunspots and the number of sunspot groups is shown to be a real feature and not a result of changing observational instruments, observers’ experience, calculation schemes, etc., and is a result of variations in the solar magnetic fields. Therefore, the attempts to minimize the discrepancies between the sunspot number and sunspot group series are not justified, and lead to the loss of important information about the variability of the solar dynamo.  相似文献   

16.
The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January–March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.  相似文献   

17.
In this paper, we review the variation of the 11-year solar cycle since the 15th century revealed by the measurement of radiocarbon content in single-year tree-rings of Japanese cedar trees. Measurements of radiocarbon content in absolutely dated tree-rings provide a calibration curve for accurate dating of archaeological matters, but at the same time, enable us to examine the variations of solar magnetic activity in the pre-historical period. The Sun holds several long-term quasi-cyclic variations in addition to the fundamental 11-year sunspot activity cycle and the 22-year polarity reversal cycle, and it is speculated that the property of the 11-year and the 22-year solar cycle varies in association with such long-term quasi-cycles. It is essential to reveal the details of solar variations around the transition time of solar dynamo for illuminating the mechanisms of the long-term solar variations. We therefore have investigated the property of the 11-year and 22-year cycles around the two grand solar minima; the Maunder Minimum (1645–1715 AD) and the Spoerer Minimum (1415–1534 AD), the periods of prolonged sunspot minima. As a result, slight stretching of the “11-year” and the “22-year” solar cycles was found during these two grand solar activity minima; continuously during the Maunder Minimum and only intermittently during the Spoerer Minimum. On the contrary, normal or slightly shortened 11-year cycles were detected during the interval period of these two minima. It suggests the inverse correlation between the solar cycle length and solar magnetic activity level, and also the change of meridional flow during the grand solar activity minima. Further measurements for the beginning of the grand solar minima will provide a clue to the occurrence of such prolonged sunspot disappearance. We also discuss the effect of solar variations to radiocarbon dating.  相似文献   

18.
Summary The correlation between monthly median critical frequencies and solar activity was determined for Washington, D.C. Results were compared with those from a similar study made for six Arctic stations. For noon data (E, F1 andF2 layers), a greater value off c (at zero sunspot number) and a slightly greater slope were obtained for Washington than for the Arctic locations. The influence of increased solar activity on the behavior of the midnight ionosphere is discussed.  相似文献   

19.
Summary Mean hourly values of magnetic declination, horizontal intensity and vertical intensity observed at Toolangi during two ten year periods (1924–1933 and 1949–1958) have been analysed to determine their solar and luni-solar diurnal components. The results, showing the variations of the first four harmonic components with season, degree of magnetic activity and annual sunspot number, are tabulated and discussed. It is shown that there are marked differences in the dependence ofS andL on the various parameters and a tentative explanation of this phenomenon is given.  相似文献   

20.
Summary The lunar tide in theE-layer of the ionosphere above Istanbul has been determined by the analysis of thefo E parameter from 1964–1967. Semi-diurnal variations were found to be significant. The seasonal and monthly variations of the amplitude and phase of the lunar tide show very little differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号