首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
Recently, many studies have argued for the existence of two types of El Niño phenomena based on different spatial distributions: the conventional El Niño [or Eastern Pacific (EP) El Niño], and the Central Pacific (CP) El Niño. Here, we investigate the decadal modulation of CP El Niño occurrences using a long-term coupled general circulation model simulation, focusing, in particular, on the role of climate state in the regime change between more and fewer CP El Niño events. The higher occurrence regime of the CP El Niño coincides with the lower occurrence regime of EP El Niño, and vice versa. The climate states associated with these two opposite regimes resemble the leading principal component analysis (PCA) modes of tropical Pacific decadal variability, indicating that decadal change in climate state may lead to regime change in terms of two different types of El Niño. In particular, the higher occurrence regime of CP El Niño is associated with a strong zonal gradient of mean surface temperature in the equatorial Pacific, along with a strong equatorial Trade wind over the area east of the dateline. In addition, the oceanic variables—the mixed layer depth and the thermocline depth—show values indicating increased depth over the western-to-central Pacific. The aforementioned climate states obviously intensify zonal advective feedback, which promotes increased generation of the CP El Niño. Frequent CP El Niño occurrences are not fully described by oceanic subsurface dynamics, and dynamical or thermodynamical processes in the ocean mixed layer and air–sea interaction are important contributors to the generation of the CP El Niño. Furthermore, the atmospheric response with respect to the SSTA tends to move toward the west, which leads to a weak air–sea coupling over the eastern Pacific. These features could be regarded as evidence that the climate state can provide a selection mechanism of the El Niño type.  相似文献   

2.
温琴  何国瑞  杨海军 《大气科学》2022,46(5):1209-1224
本文利用耦合气候模式研究了“有/无”青藏高原和落基山脉对厄尔尼诺—南方涛动(ENSO)的影响,并从温度变率方程的角度详细分析了ENSO变化的成因,结果表明:移除青藏高原或落基山脉均会造成ENSO变率增强;ENSO变率在无青藏高原试验中增强的幅度比在无落基山脉试验中更大。ENSO变率在地形敏感性试验中的变化与热带太平洋平均气候态的改变密切相关。移除青藏高原后热带太平洋信风减弱,大气对流中心东移,混合层变浅,温跃层变平,呈现出El Ni?o型海温分布,这些平均态的变化使海表风应力敏感性,Ekman抽吸敏感性以及温跃层敏感性幅度增强,最终导致ENSO振幅增大60%。然而,在移除落基山脉的情景下,热带太平洋信风变化更加复杂,大气对流中心稍有东移,混合层加深,温跃层变平,呈现出类La Ni?a型海温分布。这些变化增强了风应力敏感性和温跃层敏感性,最终导致ENSO振幅仅增大15%左右。本文研究表明,在地质时间尺度上青藏高原和落基山脉的抬升均抑制了ENSO变率。  相似文献   

3.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

4.
This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño–Southern Oscillation (ENSO). Compared with 1979–1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.  相似文献   

5.
Using the Paleoclimate Modeling Inter-comparison Project Phase 2 and 3 (PMIP2 and PMIP3), we investigated the tropical Pacific climate state, annual cycle, and El Niño-Southern Oscillation (ENSO) during the mid-Holocene period (6,000 years before present; 6 ka run). When the 6 ka run was compared to the control run (0 ka run), the reduced sea surface temperature (SST) and the reduced precipitation due to the basin-wide cooling, and the intensified cross-equatorial surface winds due to the hemispheric discrepancy of the surface cooling over the tropical Pacific were commonly observed in both the PMIP2 and PMIP3, but changes were more dominant in the PMIP3. The annual cycle of SST was weaker over the equatorial eastern Pacific, because of the orbital forcing change and the deepening mixed layer, while it was stronger over the equatorial western pacific in both the PMIP2 and PMIP3. The stronger annual cycle of the equatorial western Pacific SST was accompanied by the intensified annual cycle of the zonal surface wind, which dominated in the PMIP3 in particular. The ENSO activity in the 6 ka run was significantly suppressed in the PMIP2, but marginally reduced in the PMIP3. In general, the weakened air-sea coupling associated with basin-wide cooling, reduced precipitation, and a hemispheric contrast in the climate state led to the suppression of ENSO activity, and the weakening of the annual cycle over the tropical eastern Pacific might lead to the intensification of ENSO through the frequency entrainment. Therefore, the two opposite effects are slightly compensated for by each other, which results in a small reduction in the ENSO activity during the 6 ka in the PMIP3. On the whole, in PMIP2/PMIP3, the variability of canonical (or conventional) El Niño tends to be reduced during 6 ka, while that of CP/Modoki El Niño tends to be intensified.  相似文献   

6.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

7.
El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs   总被引:2,自引:0,他引:2  
The characteristics of the El-Nino Southern Oscillation (ENSO) simulated in free integrations using two versions of the Seoul National University (SNU) ocean–atmosphere coupled global climate model (CGCM) are examined. A revised version of the SNU CGCM is developed by incorporating a reduced air–sea coupling interval (from 1?day to 2?h), a parameterization for cumulus momentum transport, a minimum entrainment rate threshold for convective plumes, and a shortened auto-conversion time scale of cloud water to raindrops. With the revised physical processes, lower tropospheric zonal wind anomalies associated with the ENSO-related sea surface temperature anomalies (SSTA) are represented with more realism than those in the original version. From too weak, the standard deviation of SST over the eastern Pacific becomes too strong in the revised version due to the enhanced air–sea coupling strength and intraseasonal variability associated with ENSO. From the oceanic side, the stronger stratification and the shallower-than-observed thermocline over the eastern Pacific also contribute to the excessive ENSO. The impacts of the revised physical processes on the seasonal predictability are investigated in two sets of the hindcast experiment performed using the two versions of CGCMs. The prediction skill measured by anomaly correlation coefficients of monthly-mean SSTA shows that the new version has a higher skill over the tropical Pacific regions compared to the old version. The better atmospheric responses to the ENSO-related SSTA in the revised version lead to the basin-wide SSTA maintained and developed in a manner that is closer to observations. The symptom of an excessively strong ENSO of the new version in the free integration is not prominent in the hindcast experiment because the thermocline depth over the eastern Pacific is maintained as initialized over the arc of time of the hindcast (7?months).  相似文献   

8.
关于ENSO本质的进一步研究   总被引:28,自引:5,他引:23  
基于ENSO是热带太平洋海气相互作用产物的科学观点,一系列的分析研究表明:赤道太平洋次表层海温异常(SOTA)有明显的年际变化(循环),并且与ENSO发生密切相关;ENSO的真正源区在赤道西太平洋暖池,赤道西太平洋暖池正(负)SOTA沿赤道温跃层东传到东太平洋,导致El Nino(La Nina)的爆发;在暖池正(负)SOTA沿赤道温跃层东传的同时,将有负(正)SOTA沿10°N和10°S两个纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA年际循环的驱动者主要是由异常东亚季风所引起的赤道西太平洋纬向风的异常.进而,可以提出关于ENSO本质的一种新理论,即ENSO实质上主要是由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环.    相似文献   

9.
An ocean general circulation model(OGCM)is used to demonstrate remote efects of tropical cyclone wind(TCW)forcing in the tropical Pacific.The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least-squares regression(called as LOESS)method from six-hour satellite surface wind data;the extracted TCW component can then be additionally taken into account or not in ocean modeling,allowing isolation of its efects on the ocean in a clean and clear way.In this paper,seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions of the equator(poleward of 10 N/S);two long-term OGCM experiments are performed and compared,one with the TCW forcing part included additionally and the other not.Large,persistent thermal perturbations(cooling in the mixed layer(ML)and warming in the thermocline)are induced locally in the western tropical Pacific,which are seen to spread with the mean ocean circulation pathways around the tropical basin.In particular,a remote ocean response emerges in the eastern equatorial Pacific to the prescribed of-equatorial TCW forcing,characterized by a cooling in the mixed layer and a warming in the thermocline.Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific.Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   

10.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   

11.
Many features of the El Niño-Southern Oscillation (ENSO) display significant interdecadal changes. These include general characteristics such as amplitude, period, and developing features, and also nonlinearities, especially the El Niño-La Niña asymmetry. A review of previous studies on the interdecadal changes in the ENSO nonlinearities is provided. In particular, the methods for measuring ENSO nonlinearities, their possible driving mechanisms, and their interdecadal changes are discussed. Two methods for measuring ENSO nonlinearities are introduced; the maximum potential intensity, which refers to the upper and lower bounds of the cold tongue temperature, and the skewness, which represents the asymmetry of a probability density function. For example, positive skewness (a strong El Niño vs. a weak La Niña) of the tropical Pacific sea surface temperature (SST) anomalies is dominant over the eastern tropical Pacific, with an increase seen during recent decades (e.g., 1980–2000). This positive skewness can be understood as a result of several nonlinear processes. These include the warming effect on both El Niño and La Niña by nonlinear dynamic heating (NDH), which intensifies El Niño and suppresses La Niña; the asymmetric negative feedback due to tropical oceanic instability waves, which has a relatively stronger influence on the La Niña event; the nonlinear physics of the ocean mixed layer; the Madden-Julian-Oscillation/Westerly-Wind-Burst and ENSO interaction; the biological-physical feedback process; and the nonlinear responses of the tropical atmospheric convection to El Niño and La Niña conditions. The skewness of the tropical eastern Pacific SST anomalies and the intensities of the above-mentioned mechanisms have both experienced clear decadal changes in a dynamically associated manner. In particular, there is a dynamic linkage between the decadal changes in the El Niño-La Niña asymmetry and those in NDH. This linkage is based on the recent decadal changes in mean climate states, which provided a favorable condition for thermocline feedback rather than for zonal advection feedback, and thus promoted the eastward propagation of the ENSO-related atmospheric and oceanic fields. The eastward propagating ENSO mode easily produces a positive NDH, resulting in asymmetric ENSO events in which El Niño conditions are stronger than La Niña conditions.  相似文献   

12.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

13.
14.
1986—1987厄尔尼诺事件的数值模拟   总被引:1,自引:0,他引:1  
张荣华 《大气科学》1994,18(Z1):847-855
用高分辨率自由表面热带太平洋环流模式,在观测到的风应力和热量、水汽通量驱动下,对1986—1987厄尔尼诺(E1Nino)事件进行了数值模拟。各种变量场的时空结构及其演变表明,模式成功地模拟出1986—1987厄尔尼诺现象。始于1986年年中,赤道西太平洋的西风异常所推动的向东表层洋流不断向中、东太平洋输送暖水,至11月份,大量暖水在日界线附近堆积,造成海面上升(达32cm)和斜温层(用20℃等温线深度表示)加深。1986年年底的强西风异常激发出赤道Kelvin波,并向赤道东太平洋和南美沿岸传播,使那里的斜温层加深和海面上升,且具有双峰结构;Kelvin波所伴随的垂直冷平流的减弱造成赤道中、东太平洋海表温度上升;1987年春季在中、东太平洋和南美沿岸地区存在强的正海表温度异常,并伴随着整个赤道太平洋斜温层东西方向变平、赤道潜流弱而中心位置变浅。厄尔尼诺相伴随的热带太平洋环流异常首先于1987年年中从东太平洋开始消失,而中、西太平洋则一直维持到1988年初。  相似文献   

15.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

16.
By using the wavelet transform method,the ENSO (2-7 a) signal and the decadal variability (8-20 a) are filtered out from the long-term SST data sets in order to investigate characteristics of the decadal variability and its impact on the ENSO.It is found that there are two different kinds of decadal SSTA modes-horseshoe and horse saddle patterns in the tropical Pacific.The horseshoe pattern represents that the decadal SSTA variability in the central Pacific is in phase with that in the eastern Pacific.The horse saddle pattern is named that they are out of phase.The former constituted the decadal variability before 1990s and the latter mainly prevailed during 1990s.As the response of atmosphere to the ocean,two decadal wind patterns appear in association with the SST decadal modes.One is characterized by anomalous development of the zonal wind,the other by anomalous development of the meridional wind.These two kinds of modes can also be regarded as different phases of the decadal oscillation.Further studies have shown that the influences of the two kinds of modes on the ENSO are different.The horse saddle mode has a stronger impact on the ENSO than the horseshoe mode.A possible mechanism for the influence of the decadal variability on the ENSO signal is presented.The central part of the thermocline along the equatorial Pacific moves up or down simultaneously with its eastern part while the decadal variability bears the horseshoe pattern.But the two segments of the thermocline in the central and eastern Pacific act oppositely while the decadal variability shows the horse saddle pattern.In this case it has an-influence on the individual ENSO'events by the superposition of the decadal variability.  相似文献   

17.
石世玮  智海  林鹏飞  陈涛 《大气科学》2020,44(5):1057-1075
海洋盐度变化为研究气候变化的机制提供了一个新的视角。本文通过对比1997/1998年、2015/2016年两次强厄尔尼诺(El Ni?o)事件和2014/2015年特殊El Ni?o事件,对盐度变化及其影响海表面温度异常(SSTA)的物理过程进行了比较分析。研究表明,El Ni?o和南方涛动(El Ni?o–Southern Oscillation, ENSO)发展的强弱与热带西太平洋大范围海表层盐度异常(SSSA)及其向东扩散的差异有明显关联。1997/1998、2015/2016年赤道东太平洋SSTA的增暖,对应两次强El Ni?o事件,在发生年4月,中西太平洋海域出现了明显的负SSSA,之后东移至日期变更线以西,SSSA引发的混合层深度(MLD)变浅、障碍层厚度(BLT)变厚,导致热带中—西太平洋表层升温增强,促使了赤道中太平洋的早期变暖;2014/2015年弱El Ni?o事件虽然在发生年4月,位于赤道中西太平洋出现了负SSSA,但没有发展东移,导致BLT的增厚过程减弱,对表层温度的调制作用减弱甚至消失。三次事件对应的盐度变化过程中,水平平流和淡水通量(FWF)引起的表层强迫是影响盐度收支的主要因子,水平平流影响盐度异常的前期变化,触发事件的发生;热带太平洋西部降水引起的FWF负异常的影响最为显著,对ENSO异常信号出现后SSSA的维持起决定性作用。相比较两次强El Ni?o事件,2014/2015年El Ni?o对应的早期FWF负异常没有发展和东移,并且之后迅速减弱,导致中西太平洋盐度负趋势减缓,MLD加深,BLT变薄,促使上表层海水冷却,抑制了赤道东太平洋的早期变暖和ENSO发展。研究结果表明,盐度变化与ENSO密切相关,热带中西太平洋海域早期表层盐度变化可能可以作为SSTA的指数。特别地,SSSA在调节SSTA时,不仅影响它的强度,而且可以作为判断ENSO是否发展及其强弱的前兆因子。  相似文献   

18.
ENSO多样性研究进展   总被引:2,自引:0,他引:2  
El Ni?o是热带中东太平洋异常偏暖的现象,发展过程具有显著的季节锁相特征。近年来,新形态事件更频繁发生引起了科学界广泛关注。学者们根据空间分布形态或爆发时间将ENSO事件分为两类,虽然选取标准不同,分类结果却有诸多相似点:中太平洋(Dateline、Modoki、CP、WP及SU型)El Ni?o事件发展至成熟时,正SSTA中心位于赤道太平洋中部;东太平洋(传统、EP、CT及SP型)El Ni?o发展至成熟时,正SSTA中心位于赤道东太平洋,低层西风异常更强,向东传输的距离也更远。研究结果显示,东太平洋El Ni?o比中太平洋El Ni?o持续时间更长,强度也更强;两类事件对全球气候的影响模态有很大的差异。近几十年,中太平洋El Ni?o出现频率有所增加,但其原因尚未清楚。关于两类事件生成发展和位相转换的动力原因,目前科学界普遍认为东太平洋El Ni?o是一个海盆尺度的海气耦合过程,其生消过程与温跃层的变化有紧密联系,但对中太平洋El Ni?o的动力机制尚未有统一的认识。   相似文献   

19.
In this paper, the leading modes of ocean temperature anomalies (OTA) along the equatorial Pacific Ocean are analyzed and their connection with El Niño-Southern Oscillation (ENSO) and interdecadal variation is investigated. The first two leading modes of OTA are connected with the different phases of the canonical ENSO and display asymmetric features of ENSO evolution. The third leading mode depicts a tripole pattern with opposite variation of OTA above the thermocline in the central Pacific to that along the thermocline in the eastern and western Pacific. This mode is found to be associated with so-called ENSO-Modoki. Insignificant correlations of this mode with the first two leading modes suggest that ENSO-Modoki may be a mode that is independent to the canonical ENSO and also has longer time scales compared with the canonical ENSO. The fourth mode reflects a warming (cooling) tendency above (below) the thermocline since 2000. Both the first and second modes have a large contribution to the interdecadal change in thermocline during 1979–2012. Also, the analysis also documents that both ENSO and OTA shifted into higher frequency since 2000 compared with that during 1979–1999. Interestingly, the ENSO-Modoki related OTA mode does not have any trend or significant interdecadal shift during 1979–2012. In addition, it is shown that first four EOF modes seem robust before and after 1999/2000, suggesting that the interdecadal shift of the climate system in the tropical Pacific is mainly a frequency shift and the changes in spatial pattern are relatively small, although the mean states over two periods experienced some significant changes.  相似文献   

20.
Vertical stratification changes at low frequency over the last decades are the largest in the western-central Pacific and have the potential to modify the balance between ENSO feedback processes. Here we show evidence of an increase in thermocline feedback in the western-central equatorial Pacific over the last 50 years, and in particular after the climate shift of 1976. It is demonstrated that the thermocline feedback becomes more effective due to the increased stratification in the vicinity of the mean thermocline. This leads to an increase in vertical advection variability twice as large as the increase resulting from the stronger ENSO amplitude (positive asymmetry) in the eastern Pacific that connects to the thermocline in the western-central Pacific through the basin-scale ‘tilt’ mode. Although the zonal advective feedback is dominant over the western-central equatorial Pacific, the more effective thermocline feedback allows for counteracting its warming (cooling) effect during warm (cold) events, leading to the reduced covariability between SST and thermocline depth anomalies in the NINO4 (160°E–150°W; 5°S–5°N) region after the 1976 climate shift. This counter-intuitive relationship between thermocline feedback strength as derived from the linear relationship between SST and thermocline fluctuations and stratification changes is also investigated in a long-term general circulation coupled model simulation. It is suggested that an increase in ENSO amplitude may lead to the decoupling between eastern and central equatorial Pacific sea surface temperature anomalies through its effect on stratification and thermocline feedback in the central-western Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号