首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《International Geology Review》2012,54(14):1817-1834
We present new geochronological, mineralogical, geochemical, and isotopic data for recently recognized lamprophyre dikes in the East Kunlun orogenic belt of NW China. Based on euhedral amphibole phenocrysts and fine-grained, plagioclase-bearing groundmass with accessory magnetite, apatite, and titanite, these dikes are classified as spessartites. Plagioclase in these rocks is Ca-rich with An ranging from 45 to 82. Most of the amphibole phenocrysts are magnesiohastingsite or ferropargasite, with systematic ‘‘normal’ zoning in which Al2O3, CaO, and Mg# decrease from core to rim. The dikes have moderate Mg# (43–49) and high Al2O3 (17.5–18.0 wt.%), FeOtotal (7.4–8.4 wt.%), and CaO (5.9–7.4 wt.%). Based on low total alkalis (Na2O?+?K2O?=?4.2%–5.0 wt.%), most samples plot in the low-K, calc-alkaline field. They are enriched in large-ion lithophile elements (e.g. K, Rb, Sr, and Ba) and light rare-earth elements, but are depleted in high-field-strength elements (e.g. Ta, Nb, P, and Ti), and have enriched Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)= 0.70883–0.71045, εNd(t) = –5.51–5.72, εHf(t)?=?–4.42–0.38). Zircon U–Pb geochronology indicates that the dikes were emplaced at 253 ± 2.5 Ma and are unrelated to their granite host, which has an age of 443 ± 1.7 Ma. The geochemical and isotopic data suggest derivation from an enriched lithospheric mantle source that had been metasomatized by subduction-related fluids. Low degrees of partial melting of a phlogopite-bearing, spinel peridotite, followed by fractional crystallization of olivine, amphibole, and Ti-bearing minerals, can account for the observed geochemical features of the dikes. Trace element geochemistry and regional geology suggest that the East Kunlun lamprophryes formed in a subduction-related setting.  相似文献   

2.
The Let?eng-la-Terae kimberlite (Lesotho), famous for its large high-value diamonds, has five distinct phases that are mined in a Main and a Satellite pipe. These diatreme phases are heavily altered but parts of a directly adjacent kimberlite blow are exceptionally fresh. The blow groundmass consists of preserved primary olivine with Fo86?88, chromite, magnesio-ulvöspinel and magnetite, perovskite, monticellite, occasional Sr-rich carbonate, phlogopite, apatite, calcite and serpentine. The bulk composition of the groundmass, extracted by micro-drilling, yields 24–26 wt% SiO2, 20–21 wt% MgO, 16–19 wt% CaO and 1.9–2.1 wt% K2O, the latter being retained in phlogopite. Without a proper mineral host, groundmass Na2O is only 0.09–0.16 wt%. However, Na-rich K-richterite observed in orthopyroxene coronae allows to reconstruct a parent melt Na2O content of 3.5–5 wt%, an amount similar to that of highly undersaturated primitive ocean island basanites. The groundmass contains 10–12 wt% CO2, H2O is estimated to 4–5 wt%, but volatiles and alkalis were considerably reduced by degassing. Mg# of 77.9 and 530 ppm Ni are in equilibrium with olivine phenocrysts, characterize the parent melt and are not due to olivine fractionation. 87Sr/86Sr(i)?=?0.703602–0.703656, 143Nd/144Nd(i)?=?0.512660 and 176Hf/177Hf(i)?=?0.282677–0.282679 indicate that the Let?eng kimberlite originates from the convective upper mantle. U–Pb dating of groundmass perovskite reveals an emplacement age of 85.5?±?0.3 (2σ) Ma, which is significantly younger than previously proposed for the Let?eng kimberlite.  相似文献   

3.
Alkaline intrusions in the eastern Shandong Province consist of quartz monzonite and granite. U-Pb zircon ages, geochemical data, and Sr-Nd-Pb isotopic data for these rocks are reported in the present paper. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 114.3?±?0.3 to 122.3?±?0.4 Ma for six samples of the felsic rocks. The felsic rocks are characterised by a wide range of chemical compositions (SiO2?=?55.14–77.63 wt. %, MgO?=?0.09–4.64 wt. %, Fe2O3?=?0.56–7.6 wt. %, CaO?=?0.40–5.2 wt. %), light rare earth elements (LREEs) and large ion lithophile elements (LILEs) (i.e., Rb, Pb, U) enrichment, as well as significant rare earth elements (HREEs) and heavy field strength (HFSEs) (Nb, Ta, P and Ti) depletion, various and high (87Sr/86Sr) i ranging from 0.7066 to 0.7087, low ε Nd (t) values from ?14.1 to ?17.1, high neodymium model ages (TDM1?=?1.56–2.38Ga, TDM2?=?2.02–2.25Ga), 206Pb/204Pb?=?17.12–17.16, 207Pb/204Pb?=?15.44–15.51, and 208Pb/204Pb?=?37.55–37.72. The results suggested that these rocks were derived from an enriched crustal source. In addition, the alkaline rocks also evolved as the result of the fractionation of potassium feldspar, plagioclase, +/? ilmenite or rutile and apatite. However, the alkaline rocks were not affected by crustal contamination. Moreover, the generation of the alkaline rocks can be attributed to the structural collapse of the Sulu organic belt due to various processes.  相似文献   

4.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar.  相似文献   

5.
ABSTRACT

The Xiaohaizi wehrlite intrusion in the early Permian Tarim Large Igneous Province, Northwest China, is characterized by unusual high-An (up to 86) plagioclases. It has been suggested that H2O may have exerted a major control on their formation, but this interpretation requires further direct evidence. Moreover, it remains unclear where the water came from. In order to unravel these questions, we present electron microprobe analyses of minerals and melt inclusions in clinopyroxene macrocrysts in the dikes crosscutting the Xiaohaizi wehrlite intrusion and in situ oxygen isotope data of zircons from the Xiaohaizi wehrlite. The homogenized melt inclusions have restricted SiO2 (45.5–48.7 wt.%) and Na2O + K2O (2.4–3.8 wt.%) contents, displaying sub-alkaline affinity. This is inconsistent with the alkaline characteristic of the parental magma of the clinopyroxenes, suggesting significant modification of melt inclusions by contamination of the host clinopyroxene due to overheating. Nevertheless, the Ca/Na ratios (2.9–4.7) of melt inclusions are the upper limit of the parental magma of the clinopyroxenes due to high CaO (21.5–23.0 wt.%) and very low Na2O (0.22–0.34 wt.%) contents in the host clinopyroxenes. Thermodynamic calculation suggests that under fixed P (2.7 kbar) and T (1000°C), and assumed H2O (~1.5 wt.%) conditions, the Ca/Na ratio of the parental magma cannot generate high-An plagioclase in the wehrlite. The results confirm that H2O exerts a major control. Zircon δ18O (VSMOW) values (2.99–3.71‰) are significantly lower than that of mantle-derived zircon (5.3 ± 0.6‰). Such low zircon δ18O values may be due to incorporation of large amounts of low-δ18O, hydrothermally altered oceanic crust. However, geochemical and Sr-Nd-Pb isotopic data do not support recycled oceanic crust in the mantle source of the Xiaohaizi intrusion. Alternatively this can be explained by incorporation of meteoritic water in the magma chamber. This will increase the H2O content of the liquid that finally crystallize high-An plagioclases.  相似文献   

6.
The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3?=?6–13?wt.%, TiO2?=?1.5–4.5?wt.%, and Na2O?=?0.4–0.8?wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30?% of melt starting from the average host lava composition. Type-C has Mg#?=?72–89, Al2O3?=?4.5–9.5?wt.%, TiO2?=?1–2.5?wt.%, Na2O?=?0.35–1?wt.% and Cr2O3?=?0.1–1.5?wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2–20?wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T?~?1250?°C, p?~?1.5?GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3–0.8?GPa and 1200–1050?°C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3?GPa; ~950?°C).  相似文献   

7.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   

8.
《International Geology Review》2012,54(13):1497-1531
The NW–SE-trendingLate Cretaceous–Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) in southwest Iran hosts numerous Plio-Quaternary subvolcanic porphyritic andesitic to rhyodacitic domes intruded into a variety of rock sequences. Bulk-rock geochemical data show that the calc-alkaline dacitic to rhyodacitic subvolcanic rocks share compositional affinities with high-silica adakites, including high ratios of Na2O/K2O >1, Sr/Y (most >70), and La/Yb (>35), high Al2O3 (>15 wt.%), low Yb (<1.8 ppm) and Y (<18 ppm) contents, no significant Eu anomalies, and flat to gently upward-sloping chondrite-normalized heavy rare-earth element (HREE) patterns. All analysed rocks are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). They also display typical features of subduction-related calc-alkaline magmas. In chondrite-normalized rare-earth element patterns, the light rare-earth elements (LREEs) are enriched ((La/Sm) N = 3.49–7.89) in comparison to those of the HREE ((Gd/Yb) N = 1.52–2.38). Except for the G-Aliabad Dome, plagioclase crystals in the Shamsabad, Ostaj, Abdollah, and Bouragh Domes are mostly oligoclase to andesine (An19–49). Amphibole and biotite are abundant ferromagnesian minerals in the subvolcanic rocks. Calcic amphiboles are dominantly magnesiohornblende, magnesiohastingsite, and tschermakite with Mg/(Mg + Fetot) ratios ranging from 0.58 to 0.78. In all the studied domes, amphiboles are typically ferric iron-rich, but that those the Shamsabad Dome have the highest Fe3+/(Fe3+ + Fe2+) ratios, between 0.69 and 0.98. Amphiboles from the Ostaj and Shamsabad Domes are relatively rich in F (0.39–1.01 wt.%) in comparison to the other studied domes. This phase commonly shows pargasitic and hastingsitic substitutions with a combination of tschermakitic and edenitic types.

Temperature-corrected Al-in-hornblende data show that amphibole phenocrysts from the Ostaj, Abdollah, and G-Aliabad Domes crystallized at pressures ranging from 2.14 to 3.42 kbar, 3.49 to 3.96 kbar, and 2.02 to 3.47 kbar, respectively. Temperatures of crystallization calculated with the amphibole–plagioclase thermometer for the Ostaj, Abdollah, and G-Aliabad subvolcanic domes range from 735°C to 826°C (mean = 786 ± 29), 778°C to 808°C (mean = 791 ± 13), and 866°C to 908°C (mean = 885 ± 12), respectively. In the annite–siderophyllite–phlogopite–eastonite quadrilateral, biotite from the G-Aliabad, Bouragh, and Ostaj Domes are characterized by relatively low total Al contents with variable Fetot/(Fetot + Mg) values from 0.26 to 0.43. All biotite analyses define a nearly straight line in the X Mg versus Fetot plot, with r = –0.96 correlation coefficient. In comparison to other domes, the F content of biotite from the G-Aliabad Dome shows high concentrations in the range of 1.80–2.57 wt.% (mean = 2.20). Inferred pre-eruptive conditions based on the calcic amphibole thermobarometric calculations for the Shamsabad, Abdollah, and Ostaj Domes show that the calc-alkaline subvolcanic magma chamber, on average, was characterized by a water content of 6.10 wt.%, a relatively high oxygen fugacity of 10–10.66 (ΔNNO + 1.28), a temperature of 896°C, and a pressure of 2.75 kbar.  相似文献   

9.
This paper presents detailed mineral chemical, element geochemical and Sr–Nd–Hf isotopic data for the Late Jurassic (155?±?4 Ma) lamprophyre dikes in the Liaodong Peninsula, NE China. The lamprophyres are shoshonitic and geochemically fall into three groups: Group I has relatively high SiO2 (52.5–57.0 wt.%), low MgO (5.5–8.3 wt.%) and compatible trace element (e.g. Cr?=?128–470 ppm) contents, high initial 87Sr/86Sr ratios (0.7093–0.7117), and low εNd (T) values (?9.6 to ?12.1); Group II has relatively low SiO2 (44.8–50.0 wt.%), high MgO (10.8–14.2 wt.%) and compatible trace element (e.g. Cr?=?456–1,041 ppm) contents, low initial 87Sr/86Sr ratios (0.7073–0.7087), and high εNd (T) values (?1.4 to ?2.9); Group III is transitional between the two in all elemental and isotopic compositions. Interpretation of the elemental and isotopic data suggests that the lamprophyric melts were derived by partial melting of subcontinental lithospheric mantle (SCLM) at a depth of 60–80 km (group I), decompression melting of upwelling asthenosphere at 60–100 km (group II), and mixing between the SCLM-derived and asthenosphere-derived melts (group III). It is assumed that the local SCLM was detached at a depth of 60–80 km by the 155 Ma ago. A continental arc-rifting related to the Palaeo-Pacific plate subduction is favored as a geodynamic force for such a cratonic lithosphere detachment.  相似文献   

10.
Rujevac is a low-temperature hydrothermal polymetallic Sb-Pb-Zn-As vein-type ore deposit, hosted within a volcanogenic-sedimentary zone situated in the Rujevac-Crvene Stene-Brezovica Diabase-Chert Formation (DCF) of the Podrinje Metallogenic District (PMD), Serbia. It is located several kilometers SE from the Boranja contact aureole, which is an integral part of the PMD in Western Serbia. Genetically related to the Tertiary granodioritic magma, the mineral assemblages are characterized by specific features. The mineral association of this deposit consists of sulfides, Pb-Sb(As) sulfosalts, native metals, oxides, hydroxides and gangue minerals. Chemical composition of the ore is very complex, where contents of valuable metals range as follows: Sb (0.17–24.31 wt.%), Zn (0.21–6.29 wt.%), Pb (0.15–6.33 wt.%), As (0.06–1.28 wt.%), Cd (25–747 ppm), Ag (7–408 ppm), Hg (13–473 ppm), and Tl (<1–29 ppm). Electron Probe Microanalyses (EPMA) of native arsenic from both the Rujevac and Stragari deposits showed contents of As up to 98.8 and 97.1 wt.%, with impurity contents of Sb up to 1.3 and 6.6 wt.%, and Tl up to 2 and 1.3 wt.%, respectively. Rhombohedral unit-cell parameters for native arsenic from Rujevac and Stragari deposits amount to: a?=?3.760(2), c?=?10.555(3) Å, V?=?129.23(7) Å3 and a?=?3.763(1), c?=?10.560(5) Å, V?=?129.48(8) Å3, respectively. Mineral assemblages, deposition order and genesis of the Rujevac polymetallic deposit were also discussed in detail. Native arsenic mineralization here has been additionally compared with similar well-known global deposits.  相似文献   

11.
The new synthetic phase Mg2Al3O[BO4]2(OH) provisionally named “pseudosinhalite” is optically, chemically, and structurally similar to the mineral sinhalite, MgAl[BO4], isostructural with forsterite. It grows hydrothermally from appropriate bulk compositions in the range 4–40?kbar at temperatures that increase with pressure (~650?→?900?°C), and it breaks down at higher temperatures to sinhalite?+?corundum?+?H2O. At P?≥?20?kbar single-phase products of euhedral twinned crystals could often be obtained. Pseudosinhalite is monoclinic with a?=?7.455 (1) Å, b?=?4.330 (1) Å, c?=?9.825 (2) Å, β?=?110.68 (1)°, and space group P21/c. Crystal structure analysis reveals that pseudosinhalite is also based on hexagonal close packing (hcp) of oxygen atoms with Mg and Al in octahedral and B in tetrahedral coordination. In pseudosinhalite the winged octahedral chains in the plane of hcp are not straight as in sinhalite but have a zigzag, 3-repeat period (Dreierkette), and only 1/10 instead of 1/8 of all tetrahedral sites are filled by boron. Hydrogen is located at a split position between two oxygen atoms O5—O5, which are only 2.550 Å apart and thus generate strong hydrogen bonding. This may be responsible for the absence of an hydroxyl absorption band between 2800?cm?1 and 3500?cm?1 in the powder IR spectrum. The equilibrium breakdown curve of pseudosinhalite to form sinhalite, corundum, and water was determined by bracketing experiments to pass through 10?kbar, 745?°C and 35?kbar, 950?°C, giving a slope of about 8?°C/kbar, similar to dehydration curves of some silicates at high pressure. In nature pseudosinhalite could have been misidentified as sinhalite. A possible appearance, like sinhalite in boron-rich skarns, would require more aluminous bulk compositions than for sinhalite at relatively low temperatures. However, pseudosinhalite might also form as a hydrous alteration product of sinhalite at low temperatures, perhaps in association with szaibelyite, MgBO2(OH).  相似文献   

12.
《International Geology Review》2012,54(13):1626-1640
Dolerite dike swarms are widespread across the North China Craton (NCC) of Hebei Province (China) and Inner Mongolia. Here, we report new geochemical, Sr–Nd–Pb isotope, and U–Pb zircon ages for representative samples of these dikes. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb analysis yielded consistent Permian ages of 274.8 ± 2.9 and 275.0 ± 4.5 Ma for zircons extracted from two dikes. The dolerites have highly variable compositions (SiO2 = 46.99–56.18 wt.%, TiO2 = 1.27–2.39 wt.%, Al2O3 = 14.42–16.20 wt.%, MgO = 5.18–7.75 wt.%, Fe2O3 = 8.03–13.52 wt.%, CaO = 5.18–9.75 wt.%, Na2O = 2.46–3.79 wt.%, K2O = 0.26–2.35 wt.%, and P2O5 = 0.18–0.37 wt.%) and are light rare earth element (LREE) and large ion lithophile element (LILE, e.g. Rb, Ba, and K, and Pb in sample SXG1-9) enriched, and Th and high field strength element (HFSE, e.g. Nb and Ta in sample SXG1-9, and Ti) depleted. The mafic dikes have relatively uniform (87Sr/86Sr)i values from 0.7031 to 0.7048, (206Pb/204Pb)i from 17.77 to 17.976, (207Pb/204Pb)i from 15.50 to 15.52, (208Pb/204Pb)i from 37.95 to 38.03, and positive ?Nd(t) (3.6–7.3), and variable neodymium model ages (TDM1 = 0.75–0.99 Ga, TDM2 = 0.34–0.74 Ga). These data suggest that the dike magmas were derived from partial melting of a depleted region of the asthenospheric mantle, and that they fractionated olivine, pyroxene, plagioclase, K-feldspar, and Ti-bearing phases without undergoing significant crustal contamination. These mafic dikes within the NCC formed during a period of crustal thinning in response to extension after Permian collision between the NCC and the Siberian Block.  相似文献   

13.
The highly calcic anorthosite (An>95) from the Sittampundi Layered Complex (SLC) develops corundum, spinel and sapphirine that are hitherto not reported from any anorthositic rocks in the world. Petrological observations indicate the following sequence of mineral growth: plagioclasematrix → corundum; clinopyroxene → amphibole; corundum + amphibole → plagioclasecorona + spinel; and spinel + corundum → coronitic sapphirine. Phase relations in the CaO–Na2O–Al2O3–SiO2–H2O (CNASH) system suggest that corundum was presumably developed through vapour present incongruent melting of the highly calcic plagioclase during ultra-high temperature (UHT) metamorphism (T ≥ 1000 °C, P ≥ 9 kbar). Topological constraints in parts of the Na2O–CaO–MgO–Al2O3–SiO2–H2O (NCMASH) system suggest that subsequent to the UHT metamorphism, aqueous fluid(s) permeated the rock and the assemblage corundum + amphibole + anorthite + clinozoisite was stabilized during high-pressure (HP) metamorphism (11 ± 2 kbar, 750 ± 50 °C). Constraints of the NCMASH topology and thermodynamic and textural modeling study suggest that coronitic plagioclase and spinel formed at the expense of corundum + amphibole during a steeply decompressive retrograde PT path (7–8 kbar and 700–800 °C) in an open system. Textural modeling studies combined with chemical potential diagrams (μSiO2–μMgO) in the MASH system support the view that sapphirine also formed from due to silica and Mg metasomatism of the precursor spinel ± corundum, on the steeply decompressive retrograde PT path, prior to onset of significant cooling of the SLC. Extremely channelized fluid flow and large positive solid volume change of the stoichiometrically balanced sapphirine forming reaction explains the localized growth of sapphirine.  相似文献   

14.
To estimate the amount of H2O stored at lower crustal levels after burial, we considered the pile of migmatitic paragneisses in the Variscan Ulten Zone as a case study area. We constructed a pseudosection in the system K2O-Na2O-CaO-FeO-MnO-MgO-Al2O3-SiO2-TiO2-H2O for an average paragneiss, a relevant prograde PT path (8.5 kbar, 600°C; 11.5 kbar, 750°C; 14.0 kbar, 1000°C) and H2O contents between 0 and 10 wt.%. Based on an assemblage of garnet?+?biotite?+?white mica?+?kyanite?+?20–30 vol.% former melt (now represented mainly by leucosomes composed of plagioclase?+?quartz), a bulk H2O content of 3.2 ± 1.1 wt.% was estimated for a peak temperature ranging between 770 and 800°C. Before melting, somewhat less than 1.8 wt.% H2O was stored in minerals. Thus, a considerable amount of H2O must have either resided in pore spaces along grain boundaries or, much less likely, infiltrated the paragneisses from below. Evidently, significant quantities of H2O as a free phase may be stored in buried sialic crust, resulting in considerable melting of deep-seated rocks during continentcontinent collision.  相似文献   

15.
Auriacusite, ideally Fe3+Cu2+AsO4O, is a new arsenate mineral (IMA2009–037) and the Fe3+ analogue of olivenite, from the Black Pine mine, 14.5 km NW of Philipsburg, Granite Co., Montana, USA. It occurs lining quartz vughs and coating quartz crystals and is associated with segnitite, brochantite, malachite, tetrahedrite and pyrite. Auriacusite forms fibrous crystals up to about 5?µm in width and up to about 100?µm in length, which are intergrown to form fibrous mats. Individual crystals are a brownish golden yellow, whilst the fibrous mats are ochreous yellow. The crystals have a silky lustre and a brownish yellow streak. Mohs hardness is about 3 (estimated). The fracture is irregular and the tenacity is brittle. Auriacusite crystals are biaxial (+), with α?=?1.830(5), β?=?1.865(5) and γ?=?1.910(5), measured using white light, and with 2V meas.?=?83(3)º and 2V calc. = 84.6º. Orientation: X?=?a, Y?=?c, Z?=?b. Crystals are nonpleochroic or too weakly so to be observed. The empirical formula (based on 5 O atoms) is (Fe 1.33 3+ Cu0.85Zn0.03)Σ2.21(As0.51Sb0.27Si0.04?S0.02Te0.01)Σ0.85O5. Auriacusite is orthorhombic, space group Pnnm, a?=?8.6235(7), b?=?8.2757(7), c?=?5.9501(5) Å, V?=?424.63(6) Å3, Z?=?4. The five strongest lines in the powder X-ray diffraction pattern are [d obs in Å / (I) / hkl]: 4.884 / (100) / 101, 001; 2.991 / (92) / 220; 2.476 / (85) / 311; 2.416 / (83) / 022; 2.669 / (74) / 221. The crystal structure was solved from single-crystal X-ray diffraction data utilising synchrotron radiation and refined to R 1?=?0.1010 on the basis of 951 unique reflections with F o?>?4σF. Auriacusite is identified as a member of the olivenite group with Fe3+ replacing Zn2+ or Cu2+ in trigonal bipyramidal coordination. Evidence suggests that auriacusite is an intermediate member between olivenite and an as yet undescribed Fe3+Fe3+-dominant member. The name is derived from the Latin auri (golden yellow) and acus (needle), in reference to its colour and crystal morphology.  相似文献   

16.
ABSTRACT

The Pliocene–Quaternary volcanics in NE Turkey are mainly hornblende–phyric trachyandesites having a narrow range of SiO2 from 61.88 to 63.00 wt.% and exhibiting adakitic signatures with their Na2O (3.67–4.27 wt.%), Al2O3 (16.19–16.80 wt.%), Y (14.1–16.5 ppm) contents and K2O/Na2O (0.87–1.12), Sr/Y (44.24–54.90), and La/Yb (36.80–43.88) ratios. Plagioclases as the main mineral phases show a wide range of compositions, and weak normal and reverse zoning. Hornblendes are generally edenite and pargasite (Mg#: 0.39–0.74). Clinopyroxenes are augite (Mg#: 0.58–0.76). Biotites have Mg# ranging from 0.45 to 0.66. The textural and compositional variations indicate disequilibrium crystallization possibly arising from magma mixing. The U–Pb zircon dating of the adakitic volcanics yielded 3.4–1.9 Ma. The studied rocks display moderate light rare earth element /heavy rare earth element ratios and enrichment in the lithophile element and depletion in high field strength element, implying that the parental magmas were derived from mantle sources previously enriched by slab-derived fluids and/or subducted sediments. The crystallization temperature and pressure estimations based on the clinopyroxene thermobarometry range from 1144 to 1186°C and from 3.92 to 7.97 kbar, respectively. Hornblende thermobarometry, oxygen fugacity, and hygrometer calculations yielded results as 908–993°C at a pressure of 2.87–5.22 kbar, water content of 4.4–8.4 wt.%, and relative oxygen fugacity (ΔNNO log units) of ?0.6 to 0.9, respectively. Biotite thermobarometry suggests relatively higher oxygen fugacity conditions (10–13.33 to 10–17.60) at temperatures of 676–819°C and at pressures from 1.15 to 1.76 kbar. In the light of the obtained data and modelling, it can be concluded that the magmas of the adakitic volcanics were derived from enriched mantle source through relatively higher partial melting and experienced magma mixing with melts at the crustal level. Additionally, the fractional crystallization and assimilation-fractional crystallization processes may have played an important role during the evolution of the studied volcanics.  相似文献   

17.
Babingtonite, Ca2Fe2+Fe3+[Si5O14(OH)] (Z?=?2, space group $ P\overline{1} $ ) from Yakuki mine (Japan), Grönsjöberget (Sweden), Kandivali Quarry (India), Baveno Quarry (Italy), Bråstad Mine (Norway), and Kouragahana (Japan), and manganbabingtonite, Ca2(Mn2+, Fe2+)Fe3+[Si5O14(OH)], from Iron Cap mine (USA) were studied using electron-microprobe analysis (EMPA), 57Fe Mössbauer analysis and single-crystal X-ray diffraction methods to determine the cation distribution at M1 and M2 and to analyze its effect on the crystal structure of babingtonite. Although all studied babingtonite crystals are relatively homogeneous, chemical zonation due to mainly Fe ? Mn substitution is observed in manganbabingtonite. Mössbauer spectra consist of two doublets with isomer shift (I.S.)?=?1.16–1.22 mm/s and quadrupole splitting (Q.S.)?=?2.33–2.50 mm/s and with I.S.?=?0.38–0.42 mm/s and Q.S.?=?0.82–0.90 mm/s, assigned to Fe2+ and Fe3+ at the M1 and M2 octahedral sites, respectively. The determined ratio of Fe2+/total Fe in manganbabingtonite (0.26) was smaller than that in the others (0.35–0.44) because of high Mn2+ content instead of Fe2+. The unit-cell parameters of babingtonite are a?=?7.466–7.478, b?=?11.624–11.642, c?=?6.681–6.690 Å, α?=?91.53–91.59, β?=?93.86–93.94, γ?=?104.20–104.34º, and V?=?560.2–562.3 Å3, and those of manganbabingtonite are a?=?7.4967(3), b?=?11.6632(4), c?=?6.7014(2) Å, α?=?91.602(2), β?=?93.989(2), γ?=?104.574(3)º, and V =565.09(5) Å3. Structural refinements converged to R 1 values of 1.64–3.16 %. The <M1-O> distance was lengthened due to the substitution of large octahedral cations such as Mn2+ for Fe2+. The increase of the M1-O8, M1-O8’ and M1-O13 lengths with mean ionic radii is slightly more pronounced than of the other M1-Oi lengths. The lengthened M1-O13 distance leads the positive correlation between Si5-O15-Si1 angle and M1-O13 distance. The increase of Si2-O3-Si1 and Si5-O12-Si4 angles due to the increase of mean ionic radius of M2 is also observed.  相似文献   

18.
《International Geology Review》2012,54(12):1353-1368
Copper and gold mineralization in the Maher-Abad area, eastern Iran, is closely related to multiple episodes of emplacement of a late Eocene granodiorite into a quartz-monzonitic stock and andesitic volcaniclastic rocks. Hypogene and supergene porphyry Cu–Au mineralization occurred within the porphyritic granodiorite and quartz-monzonite host rocks extensively altered into dominantly potassic, propylitic, phyllic, and argillic assemblages. Temperature and pressure estimates using the plagioclase–hornblende thermometer and Al-in-hornblende barometer indicate that the granodiorite intruded at 758 ± 10°C and 1.4 ± 0.2 kbar.

Biotites from the alteration zones have more variable AlIV than those in the fresh granodiorite, but nearly all are close to the ideal phlogopite composition. Biotite compositions display an increase in Al2O3, FeO, TiO2, and Cl, but a decrease in SiO2 and F, from the porphyritic granodiorite and potassic to the transitional phyllic alteration zones. Biotite from the potassic zone (X phl?=?0.63–0.67) possesses a moderate F content (0.53 to 0.82 wt.%) that is significantly higher than that in the phyllic zone (0.22 to 0.38 wt.%), exhibiting a positive correlation with X Mg and negative correlation with Cl.

With a decrease in the temperature, log (fH2O/fHF) and log (fH2O/fHCl) values calculated for fluids equilibrated with biotite increase progressively from the granodiorite through the potassic to the phyllic zones, whereas log (fHF/fHCl) shifts towards more negative values. Fugacity ratio trends in the Maher-Abad porphyry copper deposit are quite similar to those of other porphyry copper systems. The decrease in halogen content of hydrothermal fluids towards outer parts of the deposits reflects an increase in the degree of mixing between magmatic fluid and meteoric water.  相似文献   

19.
ABSTRACT

Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.  相似文献   

20.
The Juzzak Sill occurs in the western part of the east-west trending, subduction-related magmatic belt known as the Chagai arc. The sill is concordantly emplaced in the Paleocene Juzzak Formation and locally cross-cuts the Early to Middle Eocene Robat Limestone and Eocene Saindak Formation. The sill is a porphyritic pyroxene diorite that grades into a porphyritic andesite (60.12–61.57 wt% SiO2) along the chilled margins. It comprises phenocrysts of hypersthene and plagioclase (An32–45) in a medium- to fine-grained groundmass of these minerals, opaque oxide, and apatite. The rocks are high-K (2.37–2.86 wt% K2O) calc-alkaline with low Mg# (42–55), Cr (51–80 ppm), and Ni (22–30 ppm) contents. Mantle-normalized trace element patterns, exhibited by marked negative Nb anomalies and positive spikes for Sr, Rb, and Zr and are akin to island arc signatures. The relatively higher ratios of Zr/Y (3.57–6.58), Ti/V (46.05–54.36), Ta/Yb (0.14–0.15), and Th/Yb (2.56–2.65) and high 87Sr/86Sr ratio (0.70524) suggest the role of continental crust materials, thus implying continental margin-type arc affinity. The source diagnostic ratios including K/Ba, P/Zr, and La/Ce of Juzzak Sill andesite and Eocene andesite from the Chagai arc are more or less similar, but the former has a much higher K/Y and Ba/Y ratios, which suggests assimilations of the host sediments during intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号