首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluxes of fluid and heat from the oceanic crustal reservoir   总被引:1,自引:0,他引:1  
Recent discoveries define a global scale fluid reservoir residing within the uppermost igneous oceanic crust, a region of seafloor that is both warm and may harbor a substantial biosphere. This hydrothermal fluid reservoir formed initially within volcanic rocks newly erupted at mid-ocean ridges, but extends to the vastly larger and older ridge flanks. Upper oceanic crust is porous and permeable due to the presence of lava drainbacks, fissuring, and inter-unit voids, and this porosity and permeability allows active fluid circulation to advect measurable quantities of lithospheric heat from the crust to an average age of 65 Myr. A compilation of crustal porosities shows that this fluid reservoir contains nearly 2% of the total volume of global seawater. Heat flow and sediment thickness data allow calculation of reservoir temperatures, predicting 40°C mean temperatures in Cretaceous crust. Utilizing these temperature estimates, heat flow measurements and models for the thermal structure and evolution of the oceanic lithosphere, we have computed mean hydrothermal fluxes into the deep ocean as a function of plate age. The total hydrothermal volume flux into the oceans approaches 20% of the total riverine input and may contribute to the global seawater mass balance.  相似文献   

2.
Hydrothermal circulation of seawater has been suggested as a mass transport mechanism for the formation of sulphide ore deposits in the ophiolitic rocks of Cyprus. Since ophiolitic sequences are generally regarded as fragments of oceanic crust and upper mantle, hydrothermal circulation of a form inferred from geological observations on Cyprus may be analogous to that thought to occur in oceanic crust at spreading ridges. The hypothesis that ore deposits were formed in ascending plumes of hot, buoyant fluid is examined by considering thermal convection in a permeable medium. To match the inferred pattern of circulation, finite amplitude convection in a cylindrical geometry is studied using finite difference approximations. These results combined with available geological and geochemical data are applied to understand better the physical controls on mineralisation.A simple model for the formation of the hydrothermal ore deposits of Cyprus is discussed. The model is semi-quantitatively reasonable in terms of vertical fluid flow rate, thermal structure, permeability and basal heat flow, and predicts volumes of maximum mineralisation similar to those observed. Three factors are identified which were important in confining mineralisation to a small volume immediately beneath the sea water/rock boundary: (1) hot fluid was confined to a narrow core zone of a rising plume, (2) the upward fluid flux was greatest in this same core zone, and (3) significant temperature decrease occurred within a thin surface boundary layer.  相似文献   

3.
Millimeter-scale amphibole veins in the lower oceanic crust record fracture-controlled fluid flow at high-temperatures but the importance of this fluid flow for the thermal and chemical evolution of the lower oceanic crust is unclear. In the section of lower oceanic crust recovered at Hess Deep from ODP Hole 894G, which formed at the fast-spreading East Pacific Rise, these veins are randomly distributed with an average spacing of  1 m. We unravel the history of fluid flow through one of these veins by combining in situ O-isotope analyses of wall-rock plagioclase with major element analyses, geothermometry and diffusion modeling. Thermometry indicates vein sealing by amphibole at  720 °C over a narrow temperature interval (± 20 °C). In situ O-isotope analyses by ion microprobe, with a precision of < 0.5‰, reveal zoning of O-isotopes in plagioclase adjacent to the vein. The zoning profiles can be reproduced using a diffusion model if the duration of O-isotope exchange was ≤ 100 yr. A similar interval of fluid–rock exchange is suggested by modeling potassium depletion in plagioclase adjacent to the vein. If representative of fracture controlled fluid flow in the lower oceanic crust the limited duration of fluid flow, and its occurrence over a narrow temperature interval, suggest that high-temperature fluid flow in this porosity network does not transport significant heat.  相似文献   

4.
We compute the transfer of oceanic lithosphere material from the surface of the model to the inner convective mantle at successive stages of the supercontinental cycle, in the time interval from the beginning of convergence of the continents to their complete dispersal. The sequence of stages of a supercontinental cycle (Wilson cycle) is calculated with a two-dimensional numerical model of assembling and dispersing continents driven by mantle flows; in turn, the flows themselves are forming under thermal and mechanical influence of continents. We obtain that during the time of the order of 300 Myr the complete stirring of oceanic lithosphere through whole mantle does not occur. This agrees with current ideas on the circulation of oceanic crust material. Former oceanic crust material appears again at the Earth’s surface in the areas of mantle upstreams. The numerical simulation demonstrates that the supercontinental cycle is a factor which intensifies stirring of the material, especially in the region beneath the supercontinent. The reasons are a recurring formation of plumes in that region as well as a global restructuring of mantle flow pattern due to the process of joining and separation of continents. The computations of viscous shear stresses are also carried out in the mantle as a function of spatial coordinates and time. With a simplified model of uniform mantle viscosity, the numerical experiment shows that the typical maximal shear stresses in the major portion of the mantle measure about 5 MPa (50 bar). The typical maximal shear stresses located in the uppermost part of mantle downgoing streams (in a zone that measures roughly 200 × 200 km) are approximately 8 times greater and equal to 40 MPa (400 bar).  相似文献   

5.
The basaltic ocean crust, metasomatized and metamorphosed during and after generation at the ocean ridge, contains H2O stored in minerals and pore fluid. Phase equilibrium data establish the conditions for dehydration, and the conditions for melting of amphibole-gabbro or amphibole-quartz-eclogite, or for quartz-eclogite or mantle peridotite if aqueous fluids are available. But there is no concensus about the temperature distribution through the subducted crust, or within the overlying mantle wedge. Therefore, a variety of magmatic models can be derived from the experimental data. According to some calculations, endothermic dehydration reactions in the depth interval 75–125 km cool the oceanic crust to such an extent that it cannot be a major source of magmas; instead, concentrated aqueous fluids released from the crust generate magmas in the overlying peridotite. However, according to most existing thermal models, if temperatures in ocean crust are cool enough to prohibit melting of amphibolite, then temperatures in the mantle above the main sources of expelled fluids are too low for hydrous melting. The ocean crust appears to be effectively dehydrated by 100–125 km depth. Dense hydrous magnesian silicates are not likely candidates for deeper H2O transport. The extent to which H2O can be fixed in metasomatic phlogopite in crust or mantle is a significant but undetermined factor. Experimental data on minerals and liquid compositions do not support the concept of primary magmas for andesites and associated lavas from mantle or subducted crust. Complex, multi-stage processes appear to be more likely, which is consistent with recent interpretations of geochemical data.  相似文献   

6.
The Vema Transverse Ridge (VTR) is a prominent, long and narrow topographic anomaly that runs for over 300 km along a sea floor spreading flow line south of the Vema transform at 11° N in the Atlantic. It rises abruptly about 140 km from the axis of the Mid-Atlantic Ridge (MAR) in 10 Myr old crust and runs continuously up to 25 Myr old crust. It reaches over 3 km above the predicted lithospheric thermal contraction level. It is absent in crust younger than 10 Myr; thus, the uplift of the VTR must have ended roughly 10 Ma. The VTR is interpreted as the exposed edge of a flexured and uplifted slab of oceanic lithosphere that was generated at an 80 km long MAR segment. Based on satellite gravimetry imagery this MAR segment was born roughly 50 Ma and increased its length at an average rate of 1.6 mm/yr. Multibeam data show that the MAR-parallel sea floor fabric south of the VTR shifts its orientation by 5° to 10° clockwise in 11–12 Myr old crust, indicating a change at that time of the orientation of the MAR axis and of the position of the Euler rotation pole. This change caused extension normal to the transform, followed between 12 and 10 Ma by flexure of the edge of the lithospheric slab, uplift of the VTR at a rate of 2 to 4 mm/yr, and exposure of a lithospheric section (Vema Lithospheric Section or VLS) at the northern edge of the slab, parallel to the Vema transform. Ages of pelagic carbonates encrusting ultramafic rocks sampled at the base of the VLS at different distances from the MAR axis suggest that the entire VTR rose vertically as a single block within the active transform offset. A 50 km long portion of the crest of the VTR rose above sea level, subsided, was truncated at sea level and covered by a carbonate platform. Subaerial and submarine erosion has gradually removed material from the top of the VTR and has modified its slopes. Spreading half rate of the crust south of the transform decreased from 17.2 mm/yr between 26 and 19 Ma to 16.9 mm/yr between 19 and 10 Ma, to 13.6 mm/yr from 10 Ma to present. The slowing down of spreading occurred close in time to the change in ridge/transform geometry, suggesting that the two events are related. A numerical model relates lithospheric flexure to extension normal to the transform, suggesting that the extent of the uplift depends on the thickness of the brittle layer, consistent with the observed greater uplift of the older lithosphere along the VTR.  相似文献   

7.
All active midocean ridges show a uniform relationship between depth and age of the oceanic crust. Recently, it has been shown by numerical methods that convective flow in a Newtonian fluid will have a positive gravity anomaly and an upward surface deformation associated with an ascending limb. If there is thermal convection in the upper mantle, these calculations predict that there may be a correlation between free air gravity anomalies and differences from the uniform relationship between oceanic depth and age. To investigate such a correlation, we considered the crestal elevation and free air gravity anomaly over the crest of the midocean ridges. It has been suggested that the differences from the depth versus age relationship are related to spreading rate. Thus, we also considered a correlation between crestal elevation and changes in rate along the ridge axis.We found a positive correlation between free air gravity and differences in crestal depth of the midocean ridge system. We found no correlation between spreading rate and gravity and no uniform relationship which holds in all the oceans between spreading rate and observed crestal depths.The long wavelength gravity anomalies which are correlated with the differences in crestal depth cannot be supported by an 80 km thick lithosphere. Thus, they are considered evidence of flow within the aesthenosphere. Further, the correlation between gravity anomaly and differences in crestal depth has the same sign and gradient as predicted by the investigations of convection in a Newtonian fluid.  相似文献   

8.
Petrological models of the oceanic lithosphere are tested to satisfy geophysical and geochemical constraints within the framework of plate tectonics. Quartz eclogite, olivine eclogite, peridotite and dunite are considered as the material of the lithosphere. The temperature at the base of the lithosphere is assumed to be the solidus temperature. This temperature, the thermal conductivity, and the heat flow and topography changes with age are used as the geophysical constraints. The compressional wave velocity-depth profile is used to select preferred models. Among geophysically successful models, high-temperature models are preferred to wet low-temperature models, because the low-temperature models have difficulties in explaining the mechanism of generation of oceanic basalt magmas. A preferred model is a two-layer model 70 km thick consisting of peridotite at the upper lithosphere and olivine eclogite at the lower lithosphere bounded at the base by the dry solidus.  相似文献   

9.
The increased depth and volume of melting induced in a higher temperature Archaean mantle controls the stability of the lithosphere, heat loss rates and the thickness of the oceanic crust. The relationship between density distributions in oceanic lithosphere and the depth of melting at spreading centres is investigated by calculating the mineral proportions and densities of residual mantle depleted by extraction of melt fractions. The density changes related to compositional gradients are comparable to those produced by thermal effects for lithosphere formed from a mantle which is 200°C or more hotter than modern upper mantle. If Archaean continental crust formed initially above oceanic lithosphere, the compositional density gradients may be sufficient to preserve a thick Archaean continental lithosphere within which the Archaean age diamonds are preserved. The amount of heat advected by melts at mid-ocean ridges today is small but heat advected by melting becomes proportionally more important as higher mantle temperatures lead to a greater volume of melt and as the rate of production of oceanic plates increases. Archaean tectonics could have been dominated by spreading rates 2–3 times greater than now and with mantle temperatures between ca. 1600°C and 1800°C at the depth of the solidus. Mid-ocean ridge melting would produce a relatively thick but light refractory lithosphere on which continents could form, protected from copious volcanism and high mantle temperatures.  相似文献   

10.
Light continents and islands characterized by a crustal thickness of more than 30 km float over a convective mantle, while the thin basaltic oceanic crust sinks completely in subduction zones. The normal oceanic crust is 7 km thick. However, anomalously thick basaltic plateaus forming as a result of emplacement of mantle plumes into moving oceanic lithospheric plates are also pulled into the mantle. One of the largest basaltic plateaus is the Ontong Java plateau on the Pacific plate, which arose during the intrusion of a giant superplume into the plate ~100 Myr ago. Notwithstanding its large thickness (averaging ~30 km), the Ontong Java plateau is still experiencing slow subduction. On the basis of numerical modeling, the paper analyzes the oceanic crust subduction process as a function of the mantle convection vigorousness and the density, thickness, viscosity, and shape of the crust. Even a simplified model of thermocompositional convection in the upper mantle is capable of explaining the observed facts indicating that the oceanic crust and sediments are pulled into the mantle and the continental crust is floating on the mantle.  相似文献   

11.
3-D simulations of mantle convection allowing for continental crust are explored to study the effects of crustal thickening on lithosphere stability and of continents on large-scale mantle flow. Simulations begin with a crustal layer within the upper thermal boundary layer of a mantle convection roll in a 1 × 1 × 1 Cartesian domain. Convective stresses cause crust to thicken above a sheet-like mantle downwelling. For mild convective vigor an initial crustal thickness variation is required to induce 3-D lithospheric instability below the zone of crustal convergence. The amplitude of the required variation decreases with increasing convective vigor. Morphologically, instability is manifest in formation of drip-like thermals that exist within the large-scale roll associated with initial crustal thickening. A strong surface signature of the drips is their ability to cause deviations from local Airy compensation of topography. After the initial thickening phase, the crustal accumulation that forms serves as a model analog to a continent. Its presence leads to mantle flow patterns distinctly different from the steady-state roll that results in its absence. Large lateral thermal gradients are generated at its edge allowing this region to be the initiation site for continued small-scale thermal instabilities. Eventually these instabilities induce a restructuring of large-scale mantle flow, with the roll pattern being replaced by a square cell. Although preliminary and idealized, the simulations do show the fluid dynamical plausibility behind the idea that significant mantle variations can be generated along the strike of a largely 2-D mountain chain by the formation of the chain itself. The ability of a model continent to cause a change in fundamental convective planform also suggests that the effects of continental crust on mantle convection may be low-order despite the seemingly trivial volume of crust relative to mantle.  相似文献   

12.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The time evolution of negative buoyancy of a subducting slab is modelled from the beginning of subduction under various kinematic conditions (dip angle and subduction velocity). The calculations take into account the thermal and density effects of the variations of the thermophysical parameters with temperature and pressure, and of phase transitions. The magnitude of the negative buoyancy increases during subduction of oceanic lithosphere, up to values in the (2–4) × 1013 N m−1 range when the tip of the slab reaches a depth of 600–700 km. If continental material arrives at the trench and is subducted, the downward buoyancy decreases by an amount proportional to the volume of the subducted continental crust. Assuming that subduction stops when the buoyancy becomes zero, and that delamination of the continental crust or slab breakoff do not occur, the maximum downdip length of the subductable continental crust is estimated as a function of the dip angle, subduction velocity and geometry of the margin. In most cases, subduction of continental material down to depths of 100–250 km is possible, and continental subduction can continue for times up to 10–15 Ma if the velocity is low. These estimates are not significantly affected by the hypothetical occurrence of a metastable olivine wedge within the slab, and could be lower bounds if the lower continental crust is mafic and transforms to eclogite.  相似文献   

14.
简要回顾了几十年来对地震发生前、地震过程中和震后地下流体和地球化学变化的研究和成果,这些研究一般都是以探索地震预报可能性为目的的。论述了与地震有关的地下水文及地球化学变化的机理,这些地下流体(包括地下水和气体诸如氢、氧和惰性气体)的起源和迁移流动现象以及详细介绍了早期和近代对有关地震的地下流体和地球化学变化的观测成果。同时指出了对地下流体和地球化学作为地震前兆来观测研究的困难所在以及为了克服这些困难而应该采取的地震前兆观测研究的方向,例如多种手段和多种原理方法,开发有效的地球物理和地球化学模型以及适当的数据分析统计方法等。  相似文献   

15.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

16.
The well-preserved extrusive sequence of the Solund-Stavfjord Ophiolite Complex (SSOC) in the West Norwegian Caledonides enables reconstruction of the uppermost oceanic crust that developed in a marginal basin. Basaltic sheet flows, pillow lavas and volcanic breccias are the main components of the extrusive sequence and show stratigraphic and structural evidence for a cyclic development. The first stage in a volcanic cycle is characterized by high extrusion rates yielding sheet flows, commonly with the thickest flow units at the base. Sequences of sheet flows can be correlated laterally for at least 6.5 km. Pillow lavas succeed the sheet flows later in a volcanic cycle with progressively smaller pillows forming at decreasing extrusion rates. Volcanic breccias occur towards the end of a volcanic cycle, but may also occur at lower stratigraphie levels. They are made generally of pillow breccias and hyaloclastites. The extrusive sequence of the SSOC oceanic crust was constructed through seven volcanic cycles that resulted in stratigraphic units with thicknesses ranging from 40 to 225 m. This architecture is comparable to sequences in in situ oceanic crust developed along slow- to intermediate-spreading ridges.  相似文献   

17.
Gabbroic cumulates drilled south of the Kane Transform Fault on the slow-spread Mid-Atlantic Ridge preserve up to three discrete magnetization components. Here we use absolute age constraints derived from the paleomagnetic data to develop a model for the magmatic construction of this section of the lower oceanic crust. By comparing the paleomagnetic data with mineral compositions, and based on thermal models of local reheating, we infer that magmas that began crystallizing in the upper mantle intruded into the lower oceanic crust and formed meter-scale sills. Some of these magmas were crystal-laden and the subsequent expulsion of interstitial liquid from them produced ‘cumulus’ sills. These small-scale magmatic injections took place over at least 210?000 years and at distances of ∼3 km from the ridge axis and may have formed much of the lower crust. This model explains many of the complexities described in this area and can be used to help understand the general formation of oceanic crust at slow-spread ridges.  相似文献   

18.
Brittle deformation of oceanic lithosphere due to thermal stress is explored with a numerical model, with an emphasis on the spacing of fracture zones. Brittle deformation is represented by localized plastic strain within a material having an elasto-visco-plastic rheology with strain softening. We show that crustal thickness, creep strength, and the rule governing plastic flow control the formation of cracks. The spacing of primary crack decreases with crustal thickness as long as it is smaller than a threshold value. Creep strength shifts the threshold such that crust with strong creep strength develops primary cracks regardless of crustal thicknesses, while only a thin crust can have primary cracks if its creep strength is low. For a thin crust, the spacing of primary cracks is inversely proportional to the creep strength, suggesting that creep strength might independently contribute to the degree of brittle deformation. Through finite versus zero dilatation in plastic strain, associated and non-associated flow rule results in nearly vertical and V-shaped cracks, respectively. Changes in the tectonic environment of a ridge system can be reflected in variation in crustal thickness, and thus related to brittle deformation. The fracture zone-free Reykjanes ridge is known to have a uniformly thick crust. The Australian-Antarctic Discordance has multiple fracture zones and thin crust. These syntheses are consistent with enhanced brittle deformation of oceanic lithosphere when the crust is thin and vice versa.  相似文献   

19.
A model, in which dissolved ions migrate through water films surrounding mineral grains to sites of reaction, predicts the geologically rapid occurrence of the gabbro-eclogite phase change in the earth's mantle at temperatures less than 600–800°C. In a water-undersaturated mantle, interstices within the rock can contain water vapor in equilibrium with small amounts of hydrous phases such as chlorite, tremolite or talc and in the presence of other gases such as CO2, at H2O pressures less than the lithostatic pressure of the rock. The solubility of ions in this interstitial water vapor is strongly dependent on pressure and is the rate-limiting process in the model; reaction occurs rapidly if the water pressure is at least 0.5–1 kbar. The 5 km of oceanic gabbroic crust can transform to eclogite upon subduction into the mantle at depths of several tens of kilometers, depending on the rate of heating of the descending crustal material and the nature of the minor hydrous phases present. The downward body force on the descending slab due to the eclogitization of oceanic crust is comparable to the downward forces associated with thermal contraction of the slab and the elevation of the olivine-spinel phase boundary.  相似文献   

20.
Orogenic lherzolites allow for almost “in-situ” observation of mantle isotopic heterogeneities on a restricted geographical scale, in contrast to basalts for which melting processes have averaged original mantle compositions over uncertain scales. Pb isotopes from whole rocks and clinopyroxenes from the massifs of Lherz (Pyrenees), Lanzo (Alps), Beni Bousera (Morocco) and Zabargad (Red Sea) show internal heterogeneities that encompass the entire range of variation observed in oceanic basalts. Some depleted lherzolites have a very unradiogenic composition similar to that of the most depleted ridge tholeiites. Pyroxenites from mafic layers generally have more radiogenic compositions, some of them comparable to the most radiogenic oceanic island results. The isotopic differences between lherzolites and pyroxenites vanish where layers are very closely spaced ( < 2 cm). In this case, the lherzolites may have equilibrated with the more Pb-rich pyroxenites through solid-state diffusion under mantle conditions. These results directly illustrate the smallest scales at which Pb isotopic heterogeneity may survive within the mantle.The genesis of these heterogeneities are discussed within the framework of the “marble cake” mantle model [1], where lherzolites are residues left over after oceanic crust extraction, whereas pyroxenites represent either basaltic or cumulate portions of the oceanic crust, reinjected by subduction and stretched by solid-state mixing during mantle convection. The Pb isotope data suggest that each massif was involved in several cycles of convective overturn, segregation and reinjection of the oceanic crust, during periods well over 1 Ga.If the upper mantle is made of interlayered radiogenic and unradiogenic layers, basalt heterogeneities may result from preferential melt-extraction from different layers depending on the degree of melting, as well as from large-scale, plume-related mantle heterogeneities. Orogenic lherzolites therefore allow direct observation of disseminated small-scale heterogeneities previously inferred from observations of oceanic basalts from seamounts and ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号