首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

2.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

3.
The formation of the thermal cross section of the lithosphere and mantle upon the interaction between the mantle convection and the immobile continent surrounded by the oceanic lithosphere is studied by numerical modeling. The convective temperature and velocity fields and then the averaged geotherms for subcontinental and suboceanic regions up to the boundary with the core are calculated from the solution of convection equations with a jump in viscosity in the continental zone. Using the experimental data on the solidus temperature in the rocks of the upper mantle, the average thickness of the continental and oceanic lithosphere is estimated at 190 and 30 km, respectively. The effect of a hot spot formed in the subcontinental upper mantle at a depth of 250–500 km, which has not been previously noted, is revealed. Although the temperature in this zone is typically assumed to be close to adiabatic, the calculations show that it is actually higher than adiabatic by up to 200°C. The physical mechanism responsible for this effect is associated with the accumulation of convective heat beneath the thermally insulating layer of the continental lithosphere. The revealed anomalies can be important in studying the phase and mineral transformations at the base of the lithosphere and in the regional geodynamical reconstructions.  相似文献   

4.
几乎所有大陆岩石层的减薄现象,可能都与海洋板块的俯冲作用相关,但是两者之间的内在联系迄今仍不十分明确,为此,我们设计了一系列包含洋-陆俯冲系统的二维数值模型,来探讨海洋板块的俯冲作用对上覆大陆岩石层变形行为的影响,尤其对大陆岩石层减薄效应的制约.模型结果表明,海洋板块俯冲过程中的地幔楔熔体对大陆岩石层地幔的热侵蚀以及由熔体上升所诱发的地幔局部对流的强烈扰动会导致上覆大陆岩石层的减薄效应.这种效应不仅表现在横向上的向陆内蔓延,还表现在垂向上的向浅部发展.且多类动力学参数都能制约大陆岩石层的减薄效应.具体地,随着汇聚速率和洋壳厚度的增加,上覆大陆岩石层在横向上的减薄范围越大,在垂向上的减薄程度也越深;而随着俯冲海洋板块年龄的增加,上覆大陆岩石层在横向上的减薄范围增大,但在垂向上的减薄程度会减小;随着上覆大陆岩石层厚度的增加,其横向减薄范围会减小,但在垂向上的减薄程度会加深.本文研究成果能为揭示华北克拉通减薄/破坏的动力学过程提供一定的理论参考依据.  相似文献   

5.
The models suggested for the oceanic lithosphere which best predict oceanic heat flow and depth profiles are the constant thickness model and a model in which the lithosphere thickens away from the ridge with a heat source at its base. The latter is considered to be more physically realistic. Such a model, constrained by the observed oceanic heat flow and depth profiles and a temperature at the ridge crest of between 1100°C and 1300°C, requires a heat source at the base of the lithosphere of between 0.5 and 0.9 h.f.u., thermal conductivities for the mantle between 0.005 and 0.0095 cal cm−1 °C−1 s−1 and a coefficient of thermal expansion at 840°C between 4.1 × 10−5 and 5.1 × 10−5 °C−1. Plate creation and subduction are calculated to dissipate about 45% of the total earth heat loss for this model. The efficiency of this mechanism of heat loss is shown to be strongly dependent on the magnitude of the basal heat source. A relation is derived for total earth heat loss as a function of the rate of plate creation and the amount of heat transported to the base of plates. The estimated heat transport to the base of the oceanic lithosphere is similar to estimates of mantle heat flow into the base of the continental lithosphere. If this relation existed in the past and if metamorphic conditions in late Archaean high-grade terrains can be used to provide a maximum constraint on equilibrium Archaean continental thermal gradients, heat flow into the base of the lithosphere in the late Archaean must have been less than about 1.2–1.5 h.f.u. The relation between earth heat loss, the rate of plate creation and the rate of heat transport to the base of the lithosphere suggests that a significant proportion of the heat loss in the Archaean must have taken place by the processes of plate creation and subduction. The Archaean plate processes may have involved much more rapid production of plates only slightly thinner than at present.  相似文献   

6.
The increased depth and volume of melting induced in a higher temperature Archaean mantle controls the stability of the lithosphere, heat loss rates and the thickness of the oceanic crust. The relationship between density distributions in oceanic lithosphere and the depth of melting at spreading centres is investigated by calculating the mineral proportions and densities of residual mantle depleted by extraction of melt fractions. The density changes related to compositional gradients are comparable to those produced by thermal effects for lithosphere formed from a mantle which is 200°C or more hotter than modern upper mantle. If Archaean continental crust formed initially above oceanic lithosphere, the compositional density gradients may be sufficient to preserve a thick Archaean continental lithosphere within which the Archaean age diamonds are preserved. The amount of heat advected by melts at mid-ocean ridges today is small but heat advected by melting becomes proportionally more important as higher mantle temperatures lead to a greater volume of melt and as the rate of production of oceanic plates increases. Archaean tectonics could have been dominated by spreading rates 2–3 times greater than now and with mantle temperatures between ca. 1600°C and 1800°C at the depth of the solidus. Mid-ocean ridge melting would produce a relatively thick but light refractory lithosphere on which continents could form, protected from copious volcanism and high mantle temperatures.  相似文献   

7.
For a lherzolite mantle with about 0.1 wt.-percent CO2 or less, and a CO2/H2O mole ratio greater than about one, the mantle solidus curve in P-T space will have two important low-temperature regions, one centered at about 9 kbar (30 km depth) and another beginning at about 28 kbar (90 km depth). It is argued that the depth of generation of primary tholeiitic magmas beneath ridge crests is about 9 kbar, and that the geotherm changes from an adiabatic gradient at greater pressures to a strongly superadiabatic gradient at lesser pressures. Such a ridge geotherm would intersect the solidus at two separate depth intervals corresponding to the two low-temperature regions on the solidus. With increasing age and cooling of the lithosphere, the shallow partial melt zone would pinch out and the thickness of the deep partial melt zone would decrease. With increasing depth in a mature oceanic lithosphere, the rock types would consist of depleted harzburgite from directly beneath the crust to about 30 km depth, fertile spinel lherzolite from about 30 km to 50–60 km, and fertile garnet lherzolite from about 50–60 km to the top of the deep partial melt zone at about 90 km.  相似文献   

8.
Aleutian magnesian andesites: Melts from subducted Pacific ocean crust   总被引:15,自引:0,他引:15  
Several diagnostic chemical characteristics of an uncommon Aleutian magma type support a proposed origin that involves a small amount of partial melting of subducted Pacific ocean crust (basalt) consisting mainly of garnet and clinopyroxene (eclogite or garnet websterite). Among the characteristics are high La/Yb ratios and Sr contents and low ratios of radiogenic to non-radiogenic Sr and Pb. The major element composition of the andesites resembles that of hydrous melts in equilibrium with peridotite: a low ratio of total Fe to Mg is distinctive. These disparate observations can be reconciled if large ion lithophile (LIL)- element-rich hydrous melt from the subducted oceanic crust equilibrates with olivine and orthopyroxene in overlying LIL-element-depleted mantle and then erupts without interacting with the island are crust. The compositional dissimilarity of the magnesian andesites and most other andesites from the Aleutian island arc precludes application of this model to island are magmatism in general.  相似文献   

9.
Two contrasted types of structures have been recognized in peridotites from ophiolites and from the oceanic environment. The first one, typical of high-temperature/moderate-stress conditions, is observed in the upper part of ophiolitic peridotites and has been ascribed to plastic flow in an oceanic ridge environment. The second one, typical of moderate-temperature/high-stress conditions, is more specially dealt with here. It is printed in the peridotites above the basal metamorphic aureole found in many ophiolites. The strain increases downward over 1–2 km to produce peridotite mylonites at the contact with the metamorphic aureole. Similarities with rocks from trench and island arc environments suggest ascribing this deformation in ophiolites to a trench environment. We propose that shear fracturing in a young oceanic lithosphere is initiated by the compressive elastic stress in its lower part which is produced by bending of the subducted plate. An externally applied compressive stress is responsible for subsequent overthrusting of the fractured lithosphere. This interpretation is in good agreement with the available geophysical data on young subducted plates and with the physical data on ophiolitic peridotites.  相似文献   

10.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

11.
Phase equilibrium experiments were performed on typical ‘oceanic’ and ‘cratonic’ peridotite compositions and a Ca, Al-rich orthopyroxene composition, to test the proposal that garnet lherzolites exsolved from high-temperature harzburgites, and to further our understanding of the origin of ancient cratonic lithospheres. ‘Oceanic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1450–1600°C, but at 5 GPa and temperatures less than 1450°C, crystallize clinopyroxene to become true lherzolites. ‘Cratonic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1300–1600°C. Garnet-free harzburgite crystallizes from both ‘cratonic’ and ‘oceanic’ peridotite at temperatures above 1450°C and pressures below 4.5–5 GPa. Phase relations for the high Ca, Al-rich orthopyroxene composition essentially mirror those for ‘oceanic’ peridotite.The complete solution of garnet and clinopyroxene into orthopyroxene observed in all three starting compositions at temperatures near or above the mantle solidus at pressures less than 6 GPa supports the hypothesis that garnet lherzolite could have exsolved from harzburgite. The inferred cooling path for the original high-temperature harzburgite protoliths of garnet lherzolites differs depending on bulk composition. The precursor harzburgite protoliths of garnet lherzolites and harzburgites with ‘cratonic’ bulk compositions apparently experienced simple isobaric cooling from formation temperatures near the peridotite solidus to those at which most of these peridotites were sampled in the mantle (< 1200°C). The cooling histories for harzburgite protoliths of sheared garnet lherzolites with ‘oceanic’ compositional affinity are speculated to have involved convective circulation of mantle material to depths deeper than those at which it was originally formed.Phase equilibria and compositional relationships for orthopyroxenes produced in phase equilibrium experiments on peridotite and komatiite are consistent with an origin for ‘cratonic’ peridotite as a residue of Archean komatiite extraction, which has since cooled and exsolved clinopyroxene and garnet to become the common low-temperature, coarse-grained peridotite thought to comprise the bulk of the mantle lithosphere beneath the Archean Kaapvaal craton.  相似文献   

12.
Many ocean island basalts (OIB) that have isotopic ratios indicative of recycled crustal components in their source are silica-undersaturated and unlike silicic liquids produced from partial melting of recycled mid-ocean ridge basalt (MORB). However, experiments on a silica-deficient garnet pyroxenite, MIX1G, at 2.0-2.5 GPa show that some pyroxenite partial melts are strongly silica-undersaturated [M.M. Hirschmann et al., Geology 31 (2003) 481-484]. These low-pressure liquids are plausible parents of alkalic OIB, except that they are too aluminous. We present new partial melting experiments on MIX1G between 3.0 and 7.5 GPa. Partial melts at 5.0 GPa have low SiO2 (<48 wt%), low Al2O3 (<12 wt%) and high CaO (>12 wt%) at moderate MgO (12-16 wt%), and are more similar to primitive OIB compositions than lower-pressure liquids of MIX1G or experimental partial melts of anhydrous or carbonated peridotite. Solidus temperatures at 5.0 and 7.5 GPa are 1625 and 1825°C, respectively, which are less than 50°C cooler than the anhydrous peridotite solidus. The liquidus temperature at 5.0 GPa is 1725°C, indicating a narrow melting interval (∼100°C). These melting relations suggest that OIB magmas can be produced by partial melting of a silica-deficient pyroxenite similar to MIX1G if its melting residue contains significant garnet and lacks olivine. Such silica-deficient pyroxenites could be produced by interaction between recycled subducted oceanic crust and mantle peridotite or could be remnants of ancient oceanic lower crust or delaminated lower continental crust. If such compositions are present in plumes ascending with potential temperatures of 1550°C, they will begin to melt at about 5.0 GPa and produce appropriate partial melts. However, such hot plumes may also generate partial melts of peridotite, which could dilute the pyroxenite-derived partial melts.  相似文献   

13.
An historical introduction to the geotherm and its significance for the existence of a diamond window at the base of the peridotite lithosphere is followed by a brief survey of types of mantle zenoliths (low T, high T and metasomatized peridotites, megacrysts or discrete nodules, eclogites and less common varieties). The similarities of eclogite xenoliths to the subducted eclogites with graphitized diamonds in the peridotite massif of Beni Bousera, northern Morocco, are reviewed. Diamond-bearing peridotite (Archaean harzburgite and lherzolite) and eclogite xenoliths are rare, having suffered excessive disaggregation. They do not necessarily relate proportionately to the types of diamonds in the host kimberlite/lamproite.Batches of single mineral species from disaggregated diamondiferous xenoliths, particularly garnets, form a realistic approach to diamond exploration. Nickel thermometry applied to Cr pyropes, developed by Griffin et al. (1989) Contr. Miner. Petrol. 103, 199–203, and barometry dependent upon Cr content in notional coexisting spinels, provide a realistic appreciation of the extent of the diamond window. Sodium and K pressure “indicators” in eclogitic garnets and clinopyroxenes are reviewed, but estimates are affected by mantle processes (metasomatism) and amounts of coexisting P and Ti.Metasomatic processes in the basal lithosphere are sourced in the underlying asthenospheric (megacryst) magmas. Depending on the degree and type of interaction they can result in the destruction of ancient diamonds or the growth of new peridotitic diamonds. Partial destruction or replacement of mineral indicators may also result and Cr garnets acquire distinctive quantifiable trace element signatures. High T minerals encapsulated in diamond are either relict from former ambient high T conditions or the result of localized thermal highs emanating from asthenospheric magmas (or plume/diapir).It is concluded that the fullest significance of the geochemistry (sensuo lato) of the diamondiferous debris erupted by kimberlites and lamproites, can only be made by reference to complementary geophysical, structural and isotopic studies of the surrounding cratonic country rocks. Thus, tectonothermal events which punctuate the varied evolutionary histories of cratons—plume migration, rifting, subduction/overthrusting, delamination, cratonization, flood basalt generation, regional metamorphism and metasomatism, etc.—can be manifested in the deep lithosphere environment, and cannot be divorced from questions of diamond formation and survival.  相似文献   

14.
The Earth's mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436]. Indeed, the HIMU component (high µ = 238U/204Pb), one of four isotopically distinct end-members in the Earth's mantle, is generally attributed to relatively old (≥ 1–2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to assess the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle end-members) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~ 1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (< 1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.  相似文献   

15.
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, have not been simultaneously satisfied by an isotropic structure. In this paper available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. We assume that the surface wave data represents an azimuthal average of actual velocities. Thus, we can treat the mantle as transversely isotropic. The resulting models for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SH > SV in the vicinity of the low-velocity zone. Neat the East Pacific Rise, however, SV > SH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of ~50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures. A new model for average Earth is obtained which includes a thin LID. This model extends the fit of a PREM, type model to shorter period surface waves.  相似文献   

16.
Thinning of the cratonic lithosphere is common in nature, but its destruction is not. In either case, the mechanisms for both thinning and destruction are still widely under debate. In this study, we have made a review on the processes and mechanisms of thinning and destruction of cratonic lithosphere according to previous studies of geological/geophysical observations and numerical simulations, with specific application to the North China Craton (NCC). Two main models are suggested for the thinning and destruction of the NCC, both of which are related to subduction of the oceanic lithosphere. One is the “bottom-up” model, in which the deeply subducting slab perturbs and induces upwelling from the hydrous mantle transition zone (MTZ). The upwelling produces mantle convection and erodes the bottom of the overriding lithosphere by the fluid-melt-peridotite reaction. Mineral compositions and rheological properties of the overriding lithospheric mantle are changed, allowing downward dripping of lithospheric components into the asthenosphere. Consequently, lithospheric thinning or even destruction occurs. The other is the “top-down” model, characterized by the flat subduction of oceanic slab beneath the overriding cratonic lithosphere. Dehydration reactions from the subducting slab would significantly hydrate the lithospheric mantle and decrease its rheological strength. Then the subduction angle may be changed from shallow to steep, inducing lateral upwelling of the asthenosphere. This upwelling would heat and weaken the overriding lithospheric mantle, which led to the weakened lithospheric mantle dripping into the asthenosphere. These two models have some similarities, in that both take the subducting oceanic slab and relevant fluid migration as the major driving mechanism for thinning or destruction of the overriding cratonic lithosphere. The key difference between the two models is the effective depth of the subducting oceanic slab. One is stagnation and flattening in the MTZ, whereas the other is flat subduction at the bottom of the cratonic lithosphere. In the NCC, the eastern lithosphere was likely affected by subduction of the Izanagi slab during the Mesozoic, which would have perturbed the asthenosphere and the MTZ, and induced fluid migration beneath the NCC lithosphere. The upwelling fluid may largely have controlled the reworking of the NCC lithosphere. In order to discuss and analyze these two models further, it is crucial to understand the role of fluids in the subduction zone and the MTZ. Here, we systematically discuss phase transformations of hydrous minerals and the transport processes of water in the subduction system. Furthermore, we analyze possible modes of fluid activity and the problems to explore the applied feasibility of each model. In order to achieve a comprehensive understanding of the mechanisms for thinning and destruction of cratonic lithosphere, we also consider four additional possible dynamic models: extension-induced lithospheric thinning, compression-induced lithospheric thickening and delamination, large-scale mantle convection and thermal erosion, and mantle plume erosion. Compared to the subduction-related models presented here, these four models are primarily controlled by the relatively simple and single process and mechanism (extension, compression, convection, and mantle plume, respectively), which could be the secondary driving mechanisms for the thinning and destruction of lithosphere.  相似文献   

17.
Uplift of old ocean seafloor relative to the familiar t1/2 curve is generally presumed to be a consequence of an additional heat source at the base of the oceanic lithosphere. Several geodynamical mechanisms have been invoked to explain this behavior. We have taken a petrological rather than geodynamical approach and considered whether the causes of the flattening can be found within the conductive portion of the lithosphere, where viscous creep is insignificant. Accordingly, self-consistent calculations of the phase assemblages of several candidate mantle compositions have been performed, subject to the constraint of experimentally determined calorimetric measurements. We have found that, in general, for temperatures below around 800°C and pressures greater than 10 kbar, the phase change from spinel peridotite to garnet peridotite has a significantly negative Clapeyron slope, which could cause some amount of uplift of old seafloor. The transition, for representative thermal profiles, should be depressed from about 35 km (at 40 Ma) to 45 km (at 160 Ma). Since spinel peridotite is of lower density the net effect is to raise the seafloor topography. The extent of the uplift, which depends primarily on the Al2O3 content of the peridotite and on the effective thermal diffusivity of the lithosphere, should be on the order of 140–220 m.  相似文献   

18.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

19.
A review of experimental data for systems, pertaining to anhydrous fertile garnet-lherzolite shows strong convergence in the liquidus and solidus temperatures for the range 6.5–15 GPa. These can converge either to a common temperature or to temperatures which differ by only ~ 100°C. The major-element composition of magmas generated by even minor degrees of partial melting may be similar to the primordial bulk silicate Earth composition in an upper-mantle stratigraphic column extending over 160 km in depth.The convergence of the solidus and liquidus temperatures is a consequence of the highly variable dTdP of the fusion curves for minerals which crystallize in peridotite systems. In particular, dTdP for the forsterite fusion curve is much less than that for diopside and garnet. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions changes from olivine at low pressures to pyroxene, garnet, or a complex pyroxene-garnet solid solution at pressures in excess of 10–15 GPa. Geochemical data for the earliest Archean komatiites are consistent with an upper-mantle phase diagram having garnet as a liquidus phase for garnet-lherzolite compositions at high pressures. All estimates of the anhydrous solidus and liquidus for the range 10–15 GPa are consistent with silicate liquid compressibility data, which indicate that olivine may be neutrally buoyant in ultramafic magmas at these pressures.  相似文献   

20.
Three rocks representing the calc-alkaline rock series gabbro-tonalite-granite or basalt-andesite-rhyolite were reacted with varying percentages of water in sealed capsules between 600 and 1300°C and pressures to 36 kbars, corresponding to depths of more than 120 km within the earth. For each rock we present complete P-T diagrams with excess water, and the water-undersaturated liquids surface projected from P-T-XH2O space mapped with contours for constant H2O contents and with the fields for near-liquidus minerals. All changes in liquidus and solidus slopes can be correlated with changes in mineralogy from less dense to more dense, or with expansion of crystallization fields, without appeal to changes in molar volume of H2O in liquid and vapor phases. The results indicate that tholeiites and andesites of the calc-alkaline series with compositions similar to the rocks studied are not primary magmas from mantle peridotite at depths greater than about 50 km. Primary andesitic magmas from shallower levels would require very high water contents and we do not believe such magmas could normally reach the surface. The liquids results are consistent with the derivation of andesites with little dissolved water as primary magmas from subducted ocean crust (quartz eclogite), but multi-stage models are preferred. Temperatures required for the generation of andesites by fusion of continental crust are higher than considered reasonable. The evidence precludes the generation of primary rhyolites or granites from the mantle of subducted oceanic crust at mantle depths. Primary rhyolite or granite magmas with moderate water contents (saturated or undersaturated) can be generated in the crust at reasonable temperatures, and could reach near-surface levels before vesiculation. Water-undersaturated granite liquid with residual crustal minerals could constitute plutonic magmas of intermediate composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号