首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
It is shown that a large amplitude electromagnetic wave can parametrically excite low-frequency electrostatic modified electron acoustic waves which are unique to three-component plasmas ions, hot electrons and a group of cold electrons. The growth rates and thresholds of the decay instabilities are obtained. Application of our results in the auroral region of the ionosphere is illustrated.  相似文献   

2.
A theoretical investigation is carried out to analyse the propagation of ion acoustic (IA) waves in a magnetized bi-ion plasma having two populations of fluid ions and kappa-distributed electrons. The propagation properties of all possible modes (in the linear regime) are investigated. The nonlinear evolution of the IA solitary waves is governed by a Korteweg-de Vries (KdV)-like equation. The influence of obliqueness, magnitude of the magnetic field, ion polarity and electron superthermality on the IA waves is then examined. Our findings should aid in understanding the nonlinear electrostatic excitations that may propagate in spatial magnetized plasmas.  相似文献   

3.
The nonlinear properties of electron acoustic waves in a magnetized plasma consisting of hot electrons, hot ions, and cold electrons are investigated. Using a fluid-guiding center model for the cold electrons and Boltzmann distributions for the hot species, a set of nonlinear mode-coupling equations is derived. Monopole and dipole-vortex solutions are shown to exist for the system of nonlinear equations. Spectrum cascade by mode-coupling in the electron acoustic wave turbulence is investigated. Relevance of our investigation to broadband electrostatic noise (BEN) in the geomagnetic tail is discussed.  相似文献   

4.
Weak ion-acoustic solitary waves (IASWs) in unmagnetized plasmas having two-fluid ions and kappa-distributed electrons are considered. The effects of electron suprathermality, warm ion temperature and polarity on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures.  相似文献   

5.
Our objective here is to investigate a strongly coupled dusty plasma system with the presence of polarization force (PF). This plasma consists of superthermal electrons, Maxwellian ions, and negatively charged dust grains. The nonlinear propagation of dust-acoustic (DA) waves in such dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The Burgers’ and K-dV equations have been derived to and numerically analyzed. It has been found that the dust-acoustic shock and solitary waves exist associated with a negative potential only, and that the effect of the dust fluid temperature significantly modifies the basic properties (amplitude and width) of such nonlinear waves’ potential structures. We hope that the results of our present investigation should help us in understanding the localized electrostatic disturbances in space and laboratory strongly coupled dusty plasmas with superthermal electrons and polarization force.  相似文献   

6.
Results of a laboratory study of electrostatic ion-cyclotron (EIC) waves in a plasma containing K+ (39 amu) positive ions, electrons and C7F14 (350 amu) negative ions are presented. Excitation of the fundamental and higher harmonic light and heavy ion EIC modes was observed. The presence of heavy negative ions in the plasma has a significant effect on the excitation of the light ion EIC modes. The results may be relevant to the understanding of plasma wave properties in plasmas containing negative ions, such as those found in the Earth's ionosphere, the solar system, and, in particular, near Saturn's moon Titan, where an abundance of heavy negative ion species has recently been discovered [Coates, et al., 2007. Discovery of heavy negative ions in Titan's ionosphere. Geophys. Res. Lett. 34, L22103].  相似文献   

7.
In the solar wind, electrostatic ion cyclotron waves can be excited, by electrons or ions when the flow velocity becomes supersonic. The instability of these waves is investigated for a situation in which ions are streaming in opposite directions along the interplanetary magnetic field in a uniform background of relatively stationary electrons. Many modes become unstable under the existing conditions. It is conjectured that the excitation of this instability may lead to a steady state electrostatic turbulence in the solar wind.  相似文献   

8.
The theory of hydromagnetic-wave in the upper F2-region, in which electrons are in a transitional regime from collisional to collisionless conditions and ions are in a collisionless state, is examined. Derivation of the governing equations is based on the fact that the isotropic electrons are fluid-like, and the anisotropic ions follow kinetic equations modified by ion-electron collisions. Magneto-acoustic waves of a period of 0.2–10 sec are dissipated by ion Landau damping and electron thermal conduction and viscosity. Numerical solutions under ionospheric conditions show that the dissipation of hydromagnetic waves is insufficient to modify the large scale heating of the ionosphere.  相似文献   

9.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

10.
The nonlinear properties of solitary waves structure in a hot dusty plasma consisting of isothermal hot electrons, non isothermal ions and high negatively charged massive dust grains, are reported. A modified Korteweg-de Vries equation (modified KdV), which admits a solitary waves solution for small but finite amplitude, is derived using a reductive perturbation theory. A nonisothermal ions distribution provides the possibility of coexistence of amplitude rarefactive as well as compressive solitary waves. On the other hand, consideration of a critical ions density gives a stationary solution of solitary waves and the dynamics of small but finite amplitude of solitary waves is governed by Korteweg-de Vries equation (KdV). The properties of solitary waves in the two cases are discussed.  相似文献   

11.
A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) waves in an unmagnetized dusty plasma consisting of ion fluid, non-thermal electrons and fluctuating immobile dust particles has been made by the reductive perturbation technique. The basic features of DIA solitary and shock waves are studied by deriving the Korteweg-de Vries (KdV) and KdV Burger equations, respectively. It is shown that the special patterns of nonlinear electrostatic waves are significantly modified by the presence of the non-thermal electron component. In particular, the rarefactive solitary and shock structures are found with smaller amplitude in comparison to the isothermal case. The transition from DIA solitary to shock waves is also studied which is related to the contributions of the dispersive and dissipative terms. It is found that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves. Furthermore, the dissipative effect becomes important and may prevail over that of dispersion as the population of non-thermal electrons present decreases. The present investigation may be of relevance to electrostatic solitary structures observed in many space dusty plasma, such as Saturn’s E-ring.  相似文献   

12.
Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey \(q\)-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.  相似文献   

13.
It is shown that the sheared flow of electrons and ions in the presence of heavy stationary dust gives rise to unstable Alfvén waves. The coupling of newly studied low frequency electrostatic current-driven mode with the electromagnetic Alfvén and drift waves is investigated. The instability conditions and the growth rates of both inertial and kinetic Alfvén waves are estimated. The theoretical model is applied to the night side boundary regions of Jupiter’s magnetosphere which contain positive dust. The growth rates increase with increase in sheared flow speed. In the nonlinear regime, both inertial and kinetic Alfvén waves form dipolar vortices whose speed and amplitude depend upon the magnitude of the zero-order current.  相似文献   

14.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

15.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

16.
Properties of fully nonlinear ion-acoustic solitary waves in an unmagnetized and collisionless pair-ion (PI) plasma containing superthermal electrons obeying Cairns distribution have been analyzed. A linear biquadratic dispersion relation has been derived, which yields the fast (supersonic) and slow (subsonic) modes in a pair-ion-electron plasma with nonthermal electrons. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in case of slow mode, both electrostatic hump and dip type structures are formed depending on the temperature difference between positively and negatively charged ions, whereas, only dip type solitary structures have been observed for fast mode. The present work may be employed to explore and to understand the formation of solitary structures in the space (especially, the Earth’s ionosphere where two distinct pair ion species (H ±) are present) and laboratory produced pair-ion plasmas with nonthermal electrons.  相似文献   

17.
The fluid approach is employed to investigate theoretically the effect of strong electrostatic interaction on the dust acoustic (DA) shock waves near to the liquid-crystal phase transition in strongly coupled dusty plasma. The strong electrostatic interaction is modeled by effective electrostatic temperature which is considered as a dynamical variable. It is shown that the nonlinear evolution of dust acoustic shock waves in the present model is governed by a Burger equation, the coefficients in which are modified by strong coupling effect. Then, it is shown that how the perturbation of the effective electrostatic temperature modifies the basic properties of the DA shock waves.  相似文献   

18.
The electrostatic shocks and solitons are studied in weakly relativistic and collisional electron-positron-ion plasmas occurring in polar regions of pulsar. The plasma system is composed of relativistically streaming electrons, positrons while ions are taken to be stationary. Dissipative effects in the system are due to collision phenomena among the constituents of relativistic plasma. Nonlinear dynamics of the dissipation and dispersion dominated relativistic plasma systems are governed by Korteweg-de Vries Burger (KdVB) and Korteweg-de Vries (KdV) equations respectively. Numerical results, exploring the effects of plasma parameters on the profile of nonlinear waves are expedited graphically for illustration. Positron to electron temperature ratio plays the role of a decisive parameter. It is noticed that compressive shocks and solitons evolve in the system if the positron to electron temperature ratio is less than a critical value. However, there exists a threshold value of positron to electron temperature ratio beyond which the system supports the rarefactive shocks and solitons. The results may have importance in the relativistic plasmas of pulsar magnetosphere.  相似文献   

19.
Using the Sagdeev pseudo-potential technique, further investigation on the effect of nonextensive hot electrons on finite amplitude nonlinear low-frequency electrostatic waves in a magnetized two-component plasma have been reported in detail. The plasma model consists of cold ions fluid and nonextensively distributed electrons. The existence domain for the nonlinear structures have been established analytically and numerically. Apart from the compressive and rarefactive soliton solutions that have been reported earlier, the present investigation shows that double layer structures can be obtained for certain values of nonextensive electrons in the supersonic Mach number regime. The present results may provide an explanation for the observed nonlinear structures in the auroral region of the Earth’s magnetosphere.  相似文献   

20.
Effect of nonthermality of ions on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains have been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Korteweg-de Vries (KdV) equation. Moreover, the energy of two temperatures charged dusty grains were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号