首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

The vortex pair known as a modon is a classical solitary wave in the sense that it decays exponentially with distance from the center of the wave whenever the modon's phase speed of the wave is outside the linear range. In contrast, when ?1 < c < 0, the modon “far field” is oscillatory so that the modon is “nonlocal” in the sense that it has nonzero amplitude even at arbitrarily far distances from the vortex maximum. However, Tribbia and Verkley have independently noted that the oscillatory far field may be very weak for some parameter ranges.  相似文献   

2.
Abstract

This is a broad survey of the interaction of modons with topography in a one-layer, quasigeostrophic model. Numerical simulations of modons interacting with ridges, hills, random topography and other obstacles are presented. The behavior of the modon is compared to numerical simulations of a two-point-vortex model, which proves a useful guide to the basic trajectory deflection mechanism. Under sufficiently strong but quasigeostrophically valid topographic perturbations, the modon is shown to fission into two essentially independent, oppositely-signed vortices. In the breakup of a modon near a hill it is found that the positive vortex migrates to the top of the hill. The resulting correlation between the positive vorticity trapped over the hill and the topography is in sharp contrast with the theories of turbulent flow over topography and generation of flow over topography by large scale forcing, both of which describe the development of vorticity anticorrelated with topography. A heuristic explanation of this new behavior is provided in terms of the dynamics of β bT-plane vortices. Further, it is found that a modon travelling over rough topography homogenizes the field of potential vorticity in its vicinity. This behavior is explained in terms of the induced eddy activity near the modon.  相似文献   

3.

Form-preserving, uniformly translating, horizontally localized solutions (modons) are considered within the framework of nondissipative quasi-geostrophic dynamics for a two-layer model with meridionally sloping bottom. A general classification of the beta-plane baroclinic topographic modons ( g -BTMs) is given, and three distinct domains are shown to exist in the plane of the parameters. The first domain corresponds to the regular modons with the translation speed outside the range of the phase speeds of linear waves. In the second domain, modons cannot exist: only non-localized solutions are permissible here. The third domain contains both linear periodic waves and the so-called anomalous modons traveling without resonant radiation. Exact modon solutions with piecewise linear relation between the potential vorticity and streamfunction are found and analyzed. Special attention is given to the smooth regular dipole-plus-rider solutions (anomalous modons cannot carry a smooth axisymmetric rider). As distinct from their flat-bottom analogs, g -BTMs may have nonzero total angular momentum. This feature combined with the ability of g -BTMs to bear smooth riders of arbitrary amplitude provides the existence of almost monopolar (in both layers) stationary vortices.  相似文献   

4.
Abstract

Various interactions between small numbers (two and four) of baroclinic, geostrophic point vortices in a two-layer system are studied with attention to the qualitative changes in behavior which occur as size of the deformation radius is varied.

A particularly interesting interaction, which illustrates the richness of baroclinic vortex dynamics, is a collision between two hetons. (A heton is a vortex pair in which the constituent vortices have opposite signs and are in opposite layers. The “breadth” of a heton is the distance between its constituent vortices. A translating heton transports heat.) When two hetons, which initially have different breadths, collide, the result is either an exchange of partners, or a “slip-through” collision in which the initial structures are preserved. It is shown here that the outcome is always an exchange, provided the deformation radius is sufficiently small. This strongly contrasts with a collision between pairs of classical, one-layer vortices in which no exchange occurs if the initial ratio of the breadths is sufficiently extreme.

Finally the transport of passive fluid by a translating baroclinic pair is investigated. A pair of vortices in the top layer transports no lower layer fluid if the distance between the vortices is less than 1.72 deformation radii. By contrast, the size of the region trapped by a heton increases without bound as the spacing between the vortices increases.  相似文献   

5.
Abstract

We consider the mixing of passive tracers and vorticity by temporally fluctuating large scale flows in two dimensions. In analyzing this problem, we employ modern developments stemming from properties of Hamiltonian chaos in the particle trajectories; these developments generally come under the heading “chaotic advection” or “Lagrangian turbulence.” A review of the salient properties of this kind of mixing, and the mathematics used to analyze it, is presented in the context of passive tracer mixing by a vacillating barotropic Rossby wave. We then take up the characterization of subtler aspects of the mixing. It is shown the chaotic advection produces very nonlocal mixing which cannot be represented by eddy diffusivity. Also, the power spectrum of the tracer field is found to be k ? l at shortwaves—precisely as for mixing by homogeneous, isotropic two dimensional turbulence,—even though the physics of the present case is very different. We have produced two independent arguments accounting for this behavior.

We then examine integrations of the unforced barotropic vorticity equation with initial conditions chosen to give a large scale streamline geometry similar to that analyzed in the passive case. It is found that vorticity mixing proceeds along lines similar to passive tracer mixing. Broad regions of homogenized vorticity ultimately surround the separatrices of the large scale streamline pattern, with vorticity gradients limited to nonchaotic regions (regions of tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an arrangement of strands which become progressively finer in scale and progressively more densely packed; this process transfers enstrophy to small scales. Although the enstrophy cascade is entirely controlled by the large scale wave, the shortwave enstrophy spectrum ultimately takes on the classical k ? l form. If one accepts that the enstrophy cascade is indeed mediated by chaotic advection, this is the expected behavior. The extreme form of nonlocality (in wavenumber space) manifest in this example casts some doubt on the traditional picture of enstrophy cascade in the Atmosphere, which is based on homogeneous two dimensional turbulence theory. We advance the conjecture that these transfers are in large measure attributable to large scale, low frequency, planetary waves.

Upscale energy transfers amplifying the large scale wave do indeed occur in the course of the above-described process. However, the energy transfer is complete long before vorticity mixing has gotten very far, and therefore has little to do with chaotic advection. In this sense, the vorticity involved in the enstrophy cascade is “fossil vorticity,” which has already given up its energy to the large scale.

We conclude with some speculations concerning statistical mechanics of two dimensional flow, prompted by our finding that flows with identical initial energy and enstrophy can culminate in very different final states. We also outline prospects for further applications of chaotic mixing in atmospheric problems.  相似文献   

6.
Abstract

A nonlinear Stommel model of the ocean circulation on the beta plane, driven by a time periodic wind stress, is investigated in order to study symmetry properties of the observed time-mean ocean gyres. Due to the presence of vorticity advection terms the model will have a steady or rectified response to fluctuating wind fields. In this paper a small inverse Ekman number, “the small beta regime”, is considered. It is demonstrated that for this case all qualitative features of the residual circulation, obtained numerically by Veronis (1970). are reproduced in an analytical way. They include the dipole character of the gyre, its maximum symmetry breaking around the north-south axis for intermediate Reynolds numbers, measuring the ratio of vorticity forcing and dissipation, and the maximum residual response for intermediate forcing frequencies.  相似文献   

7.
Abstract

The normal mode instability of steady Wu-Verkley (1993) wave and modons by Verkley (1984, 1987, 1990) and Neven (1992) is considered. All these flows are solutions to the vorticity equation governing the motion of an ideal incompressible fluid on a rotating sphere. A conservation law for infinitesimal perturbations to each solution is derived and used to obtain a necessary condition for its exponential instability. By these conditions, Fjörtoft's (1953) average spectral number of the amplitude of an unstable mode must be equal to a specific number that depends on the degree of the solution in its inner and outer regions as well as on spectral distribution of the mode energy in these regions. Some properties of the conditions for different types of modons are discussed. The maximum growth (and decay) rate of the modes is estimated, and the orthogonality of the amplitude of each unstable, decaying, or non-stationary mode to the basic solution is shown in the energy inner product.

The new instability conditions confine the unstable disturbances of the WV wave and modon to a hypersurface in the perturbation space and allow interpretation of their energy structure. They are also useful both in estimating the maximum growth rate of unstable modes and in testing the numerical algorithms designed for the linear stability study.  相似文献   

8.
Abstract

The stability of a rotating, stationary flow of zero potential vorticity in a slowly varying channel is examined using the method of multiple scales. This technique can be applied when the variations of the basic flow occur on a length scale which is much larger than the one associated with the perturbation. To lowest order the disturbance is described by a propagating part multiplied by a slowly changing amplitude. It is shown that when the phase speed of a disturbance approaches zero, the growth of the amplitude becomes unbounded. This happens when a perturbation superimposed upon a flow which is slightly sub/supercritical, or which alters from a super- to a subcritical state, propagates over a shoaling bottom. If, however, the change of the basic flow is from a sub- to a supercritical state, the phase speed is quite large and the amplitude of the perturbation will just show minor variations along the channel. The same holds true if the steady flow is only moderately affected by the changing topography. The problem has also been analyzed using wave-action formalism, and the outcome of this alternative approach to the stability problem proved to conform to the previously obtained results. Finally, an interpretation of the calculated growth rates is undertaken in terms of “convective” amplification and “absolute” instability.  相似文献   

9.
ABSTRACT

Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing software called SOURCE (used along with the HYDRUS1D model), to study evaporation sourcing dynamics, define quantitatively “shallow” and “deep” water table conditions and test the applicability of water table fluctuation (WTF) and “bucket” methods for estimation of Eg and Eu separately.

For the “shallow” and “deep” water table we propose Eg?>?0.95Ess and Eg = 0 criteria, respectively. Assessment of the WTF method allowed sourcing of very small fluxes otherwise neglected by standard hydrological methods. Sourcing with SOURCE software was more accurate than the standard “bucket” method mainly because of greater flexibility in spatio-temporal discretization. This study emphasized the dry condition relevance of groundwater evaporation which should be analysed by applying coupled flow of heat, vapour and liquid water.
Editor D. Koutsoyiannis; Associate editor S. Kanae  相似文献   

10.
Abstract

The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors.

Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161.

Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

11.
Abstract

The first three papers in this series (Fearn, 1983b, 1984, 1985) have investigated the stability of a strong toroidal magnetic field Bo =Bo(s?)Φ [where (s?. Φ, z?) are cylindrical polars] in a rapidly rotating system. The application is to the cores of the Earth and the planets but a simpler cylindrical geometry was chosen to permit a detailed study of the instabilities present. A further simplification was the use of electrically perfectly conducting boundary conditions. Here, we replace these with the boundary conditions appropriate to an insulating container. As expected, we find the same instabilities as for a perfectly conducting container, with quantitative changes in the critical parameters but no qualitative differences except for some interesting mixing between the ideal (“field gradient”) and resistive modes for azimuthal wavenumber m=1. In addition to these modes, we have also found the “exceptional” slow mode of Roberts and Loper (1979) and we investigate the conditions required for its instability for a variety of fields Bo(s?) Roberts and Loper's analysis was restricted to the case Bo∝s? and they found instability only for m=1 and ?1 <ω<0 [where ω is the frequency non-dimensionalised on the slow timescale τx, see (1.5)]. For other fields we found the necessary conditions to be less “exceptional”. One surprising feature of this instability is the importance of inertia for its existence. We show that viscosity is an alternative destabilising agent. The standard (magnetostrophic) approximation of neglecting inertial (and viscous) terms in the equation of motion has the effect of filtering out this instability. The field strength required for this “exceptional” mode to become unstable is found to be very much larger than that thought to be present in the Earth's core, so we conclude that this mode is unlikely to play an important role in the dynamics of the core.  相似文献   

12.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

13.
Abstract

We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.  相似文献   

14.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

15.
Abstract

The gamma plane approximation introduced in this study corresponds to a nonlinear horizontal shallow flow in a plane where, in addition to the familiar linear variation of f (i.e., β), there is a quadratic variation with latitude. Such a plane may have some application to the mesoscale oceanic flow in the immediate vicinity of the North Pole because at the pole the linear gradient (β) vanishes so that the quadratic variation (γ) is the dominant gradient. It is also applicable to the flow near the center of a rotating (laboratory) tank.

Exact analytical solutions analogous to the stationary barotropic mid-latitude modons (Stern, 1975) are constructed. First, it is shown that, for a modon situated slightly off the pole (i.e., both β and γ are present) the condition of stationarity (in a resting ocean) takes the form β ∫∫ &Psi; dxdy — 2γ ∫∫ y&Psi; dxdy = 0, where &Psi; is the streamfunction and x and y are Cartesian coordinates pointing eastward and northward, respectively. Secondly, it is shown that due to the presence of γ, the cyclonic cell situated to the north increases in size and engulfs the southern anticyclone which decreases in size. Namely, as the pole is approached the engulfing cyclone grows whereas the anticyclone shrinks. Ultimately, when the center of the modon (whose diameter is R) reaches a critical distance from the pole (0.1227 R) the anticyclone diminishes to merely a point. Modons that are closer than this critical distance to the pole cannot contain an anticyclone. Far away from the pole our solution reduces to the familiar mid-latitude β-plane modon as should be the case.

In contrast to these dramatic effects of γ on modons, the migration of monopoles (i.e., isolated cyclones or anticyclones) is almost unaffected by γ even though γ is of the same order of (or larger than) β. This results from the fact that the γ-induced perturbations are symmetrical (with respect to north and south) whereas those due to β are asymmetrical. It is shown that, as in other eddies, self-propulsion is primarily caused by asymmetrical perturbations so that disturbances due to γ have almost no influence on the migration.  相似文献   

16.
Negligent killing of scientific concepts: the stationarity case   总被引:1,自引:1,他引:0  
Abstract

In scientific vocabulary, the term “process” is used to denote change in time. Even a stationary process describes a system changing in time, rather than a static one that keeps a constant state all the time. However, this is often missed, which has led to misuse of the term “nonstationarity” as a synonym of “change”. A simple rule to avoid such misuse is to answer the question: can the change be predicted in deterministic terms? Only if the answer is positive is it legitimate to invoke nonstationarity. In addition, we should have in mind that models are made to simulate the future rather than to describe the past; the past is characterized by observations (data). Usually future changes are not deterministically predictable and thus the models should, on the one hand, be stationary and, on the other hand, describe in stochastic terms the full variability, originating from all agents of change. Even if the past evolution of the process of interest contains changes explainable in deterministic terms (e.g. urbanization), it is better to describe the future conditions in stationary terms, after “stationarizing” the past observations, i.e. adapting them to represent the future conditions.  相似文献   

17.
Abstract

The adjustment of a nonlinear, quasigeostrophic, stratified ocean to an impulsively applied wind stress is investigated under the assumption that barotropic advection of vortex tube length is the most important nonlinearity. The present study complements the steady state theories which have recently appeared, and extends earlier, dissipationless, linear models.

In terms of Sverdrup transport, the equation for baroclinic evolution is a forced advection-diffusion equation. Solutions of this equation subject to a “tilted disk” Ekman divergence are obtained analytically for the case of no diffusion and numerically otherwise. The similarity between the present equation and that of a forced barotropic fluid with bottom topography is shown.

Barotropic flow, which is assumed to mature instantly, can reverse the tendency for westward propagation, and thus produce regions of closed geostrophic contours. Inside these regions, dissipation, or equivalently the eddy field, plays a central role. We assume that eddy mixing effects a lateral, down-gradient diffusion of potential vorticity; hence, within the closed geostrophic contours, our model approaches a state of uniform potential vorticity. The solutions also extend the steady-state theories, which require weak diffusion, by demonstrating that homogenization occurs for moderately strong diffusion.

The evoiution of potential vorticity and the thermocline are examined, and it is shown that the adjustment time of the model is governed by dissipation, rather than baroclinic wave propagation as in linear theories. If dissipation is weak, spin-up of a nonlinear ocean may take several times that predicted by linear models, which agrees with analyses of eddy-resolving general circulation models. The inclusion of a western boundary current may accelerate this process, although dissipation will still play a central role.  相似文献   

18.
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., KNMR) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated KNMR are within one order of magnitude of KFLUTe. The empirical parameters obtained from calibrating the NMR data suggest that “intermediate diffusion” and/or “slow diffusion” during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, “intermediate diffusion” dominates the relaxation time, therefore assuming “fast diffusion” in the interpretation of NMR data from fractured rock may lead to inaccurate KNMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable KNMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements.  相似文献   

19.
Abstract

Boundary layer techniques are used to examine the modifications due to dissipation in the normal modes of a uniformly rotating, density stratified, Boussinesq fluid in a rigid container. Arbitrary relative influence of rotation and stratification is considered. The existence of critical regions of the container boundary is discussed. In cylindrical geometry a formula is derived for the decay factor on the homogeneous “spin-up” time scale which reveals how the dominant dissipation varies as a function of several parameters. For the situation where the buoyancy and inertial frequency are exactly equal, all boundaries are everywhere critical. In this case the method of multiple time-scales is employed to investigate the confluence inertial-gravity mode which is shown to persist until the diffusive time-scale is achieved.  相似文献   

20.
The Navier–Stokes-α equation is a regularised form of the Euler equation that has been employed in representing the sub-grid scales in large-eddy simulations. Determined efforts have been made to place it on a secure deductive foundation. This requires two steps to be completed. The first is fundamental and consists of establishing from the equations governing the fluid flow, a relationship between two velocities called by Holm (Chaos, 2002a, 12, 518) the “filtered” and “unfiltered” velocities. The second consists of the relation between these two velocities. Until now, the preferred route to the first objective has been variational, by varying the action using Hamilton's principle. Soward and Roberts (J. Fluid Mech., 2008, 604, 297) followed that variational route and established the existence of an important but unwelcome term omitted by Holm in his derivation. It is shown here that the Soward and Roberts result may be derived from Euler's equation by a direct approach with considerably greater efficiency. Holm achieved the second objective by making a “Taylor hypothesis”, which we use here to evaluate the unwelcome term missing from his analysis of the first step. The resulting model equations differ from those of Holm's α model, and the attractive mean Kelvin's circulation theorem that follows from his α equations is no longer valid. For that reason, we call the term omitted by Holm unwelcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号