首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
ABSTRACT

It is shown that flows in precessing cubes develop at certain parameters large axisymmetric components in the velocity field which are large enough to either generate magnetic fields by themselves, or to contribute to the dynamo effect if inertial modes are already excited and acting as a dynamo. This effect disappears at small Ekman numbers. The critical magnetic Reynolds number also increases at low Ekman numbers because of turbulence and small-scale structures.  相似文献   

2.
Scaling laws are derived for the time-average magnetic dipole moment in rotating convection-driven numerical dynamo models. Results from 145 dynamo models with a variety of boundary conditions and heating modes, covering a wide section of parameter space, show that the time-average dipole moment depends on the convective buoyancy flux F. Two distinct regimes are found above the critical magnetic Reynolds number for onset of dynamo action. In the first regime the external magnetic field is dipole-dominant, whereas for larger buoyancy flux or slower rotation the external field is dominated by higher multipoles and the dipole moment is reduced by a factor of 10 or more relative to the dipolar regime. For dynamos driven by basal heating, the dipole moment M increases like M  F1/3 in the dipolar regime. Reversing dipolar dynamos tend to cluster near the multipolar transition, which is shown to depend on a local Rossby number parameter. The geodynamo lies close to this transition, suggesting an explanation for polarity reversals and the possibility of a weaker dipole earlier in Earth history. Internally heated dynamos generate smaller dipole moments overall and show a gradual transition from dipolar to multipolar states. Our scaling yields order of magnitude agreement with the dipole moments of Earth, Jupiter, Saturn, Uranus, Neptune, and Ganymede, and predicts a multipolar-type dynamo for Mercury.  相似文献   

3.
Abstract

An analysis of small-scale magnetic fields shows that the Ponomarenko dynamo is a fast dynamo; the maximum growth rate remains of order unity in the limit of large magnetic Reynolds number. Magnetic fields are regenerated by a “stretch-diffuse” mechanism. General smooth axisymmetric velocity fields are also analysed; these give slow dynamo action by the same mechanism.  相似文献   

4.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

5.

The behaviour of magnetic helicity in kinematic dynamos at large magnetic Reynolds number is considered. Hughes, et al . [ Phys. Lett. A 223 , 167-172 (1996)] observe that the relative helicity tends to zero in the limit of large magnetic Reynolds number. This paper gives upper bounds on the helicity, by relating the helicity spectrum to the energy spectrum. These bounds are confirmed by numerical simulation and the distribution of helicity over scales is considered. Although it is found that the total helicity becomes small in the limit of high conductivity, there can remain significant, but cancelling, helicity at large and small scales of the field. This is illustrated by considering the evolution of helicity in the stretch-twist-fold dynamo picture.  相似文献   

6.
A recent dynamo model for Mercury assumes that the upper part of the planet's fluid core is thermally stably stratified because the temperature gradient at the core–mantle boundary is subadiabatic. Vigorous convection driven by a superadiabatic temperature gradient at the boundary of a growing solid inner core and by the associated release of light constituents takes place in a deep sub-layer and powers a dynamo. These models have been successful at explaining the observed weak global magnetic field at Mercury's surface. They have been based on the concept of codensity, which combines thermal and compositional sources of buoyancy into a single variable by assuming the same diffusivity for both components. Actual diffusivities in planetary cores differ by a large factor. To overcome the limitation of the codensity model, we solve two separate transport equations with different diffusivities in a double diffusive dynamo model for Mercury. When temperature and composition contribute comparable amounts to the buoyancy force, we find significant differences to the codensity model. In the double diffusive case convection penetrates the upper layer with a net stable density stratification in the form of finger convection. Compared to the codensity model, this enhances the poloidal magnetic field in the nominally stable layer and outside the core, where it becomes too strong compared to observation. Intense azimuthal flow in the stable layer generates a strong axisymmetric toroidal field. We find in double diffusive models a surface magnetic field of the observed strength when compositional buoyancy plays an inferior role for driving the dynamo, which is the case when the sulphur concentration in Mercury's core is only a fraction of a percent.  相似文献   

7.
Abstract

This paper discusses dynamo action in generalisations of the Ponomarenko dynamo at large magnetic Reynolds number. The original Ponomarenko dynamo consists of a spiralling flow in which the stream surfaces are concentric cylinders of circular cross section, and the flow depends only on distance from the axis in cylindrical polar coordinates.

In this study, the stream surfaces are allowed to be cylinders of arbitrary cross section, and the flow is only required to be independent of the coordinate along the cylinder axes. For smooth flows alpha and eddy diffusion effects are identified, in terms of the geometry of the stream surfaces, and asymptotic formulae for growth rates in the limit of large magnetic Reynolds number are obtained. Numerical support for these results is presented using direct simulation of dynamo action in selected flows at high conductivity. Finally the case is considered when in spherical polar coordinates the flow is independent of the azimuthal coordinate and the stream surfaces, which are tori, have arbitrary cross sections.  相似文献   

8.

We are investigating numerically the nonlinear behaviour of a space-periodic MHD system with ABC forcing. Most computations are performed for magnetic Reynolds numbers increasing from 0 to 60 and a fixed kinematic Reynolds number, small enough for the trivial solution with a zero magnetic field to be stable to velocity perturbations. At the critical magnetic Reynolds number for the onset of instability of the trivial solution the dominant eigenvalue of the kinematic dynamo problem is real. In agreement with the bifurcation theory new steady states with non-vanishing magnetic field appear in this bifurcation. Subsequent bifurcations are investigated. A regime is detected, where chaotic variations of the magnetic field orientation (analogous to magnetic field reversals) are observed in the temporal evolution of the system.  相似文献   

9.
Speculation about its possible super-rotation has drawn the attention of many geophysical researchers to the Earth’s inner core. An issue of special interest for geodynamo modelling is the influence of the inner-core conductivity. It has been suggested that the finite magnetic diffusivity of the inner core prevents more frequent reversals of the Earth’s magnetic field. We explore the possible influence of the inner-core conductivity by comparing convection-driven 3D dynamo simulations with insulating or conducting inner cores (CIC) at various parameters. The influence on the field structure in the outer core is only marginal. The time behaviour of dipole-dominated non-reversing dynamos is also little affected. Concerning reversing dynamos, the inner-core conductivity reduces the number of short dipole-polarity intervals with a typical length of a few thousand years. Reversals are always correlated with low dipole strength and these short intervals are found in periods where the dipole moment stays low. Polarity intervals longer than about 10,000 years, where the dipole moment has time recover in strength, are equally likely in insulating and CIC models. Since these latter intervals are of more geophysical relevance, we conclude that the influence of the inner-core conductivity on Earth-like reversal sequences is insignificant for the dynamo model employed here.  相似文献   

10.
An inverse dynamo problem is presented in which we search for either kinematic dynamos which produce the same external magnetic fields or an invisible dynamo. The existence of flows which produce the same external magnetic fields is proved. However, we have not found general conditions necessary for such kind of dynamos. An “invisible dynamo” operates in an electrically conducting region surrounded by vacuum and generates a magnetic field trapped in the electrically conducting region so that no magnetic field exists in the vacuum. Invisible magnetic decay modes exist in cylinders, but no invisible growing field supported by the dynamo mechanism has been found.  相似文献   

11.
We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.  相似文献   

12.
Abstract

This paper builds on a speculation by Moffatt (1979) on an apparent conflict between two results of dynamo theory in the high conductivity limit. Firstly, the finding by Bondi and Gold (1950) on the boundedness of the magnetic dipole moment of a perfectly conducting fluid body is, for a sphere, extended to all magnetic multipole moments. Secondly, a refined version is considered of the simple spherical mean-field dynamo model proposed by Krause and Steenbeck (1967). Some constraints on the mean electromotive force near the boundary of the conducting body are taken into account, which have not been recognized up to now. In the framework of the second order correlation approximation it is shown that it is just these constraints that ensure the boundedness of the magnetic multipole moments in the high conductivity limit. Thus the apparent conflict is resolved. In this context another possible source of error in mean-field dynamo models is pointed out. The present theory also adds insight into dynamo process in cosmical objects, in a way that is briefly discussed.  相似文献   

13.
Abstract

Using an asymptotic expansion of Green's function for the problem of magnetic field generation by 3D steady flow of highly conducting fluid a general antidynamo theorem is proved in the case of no exponential stretching of liquid particles. Explicit formulae connecting the spectrum of the magnetic modes with the geometry of the Lagrangian trajectories are obtained. The existence of the fast dynamo action for special flows with exponential stretching is proved under the condition of smoothness of the fields of stretching and non-stretching directions.  相似文献   

14.
Abstract

Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However the nonlinearities included arc (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by cousidering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave be achieved. Moreover this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.  相似文献   

15.
Abstract

The kinematic dynamo problem is considered for certain steady velocity fields with symmetries that are plausible in a rapidly rotating convective system. By generalizing results proved for the mean field dynamo model by Proctor (1977a), it is shown that for a related “comparison problem” with modified boundary conditions, the eigenvalues are degenerate if there is no axisymmetric mean circulation, with modes of dipole and quadrupole parity excited with equal ease. The comparison problem can be shown to be closely similar to the dynamo problem when there is a region unfavourable to dynamo action surrounding the dynamo region. The near-symmetries found by Roberts (1972) for the mean field model are invoked to suggest that a close correspondence is likely even when this region is absent. It is therefore conjectured that such mean motions may be important in explaining the observed preference for solutions of dipole parity by planetary dynamos.  相似文献   

16.
Abstract

The geomagnetic field and its frequent polarity reversals are generally attributed to magnetohydrodynamic (MHD) processes in the Earth's metallic and fluid core. But it is difficult to identify convincingly any MHD timescales with that over which the reversals occur. Moreover, the geological record indicates that the intervals between the consecutive reversals have varied widely. In addition, there have been superchrons when the reversals have been frequent, and at least two, and perhaps three, 35-70 Myr long superchrons when they were almost totally absent. The evaluation of these long-term variations in the palaeogeophysical record can provide crucial constraints on theories of geomagnetism, but it has generally been limited to only the directional or polarity data. It is shown here that the correlation of the palaeogeomagnetic field strength with the field's protracted stability during a fixed polarity superchron provides such a constraint. In terms of a strong field dynamo model it leads to the speculation that the magnetic Reynolds number, and the toroidal field, increase substantially during a superchron of frequent reversals.  相似文献   

17.
本文以两种绝缘内核的发电机为基准,设置内核电导率与外核相同,选择了以固定速度超速旋转和在外核驱动下发生旋转的两种内核旋转模式,比较分析不同模型间的能量差异、磁场强度、磁雷诺数、磁极翻转频率和四个类地发电机参数.结果表明:对于弱偶极子发电机模型,有限导电内核的引入会对其偶极子强度的相对变化量造成较大影响,最高达103.00%;由外核驱动旋转的有限导电内核模型对于本文其他目标研究量所带来的影响比较小,均小于5%;而固定旋转速度的有限导电内核的模型对磁极翻转频率、赤道对称性和纬向性均存在较明显影响,最大变化量达124.62%.综合本文所选用的发电机模型的特征和数值分析结果,可以发现虽然由外核驱动旋转的有限导电内核模型其转速不可控且存在较大波动,但各物理量变化量与实际内核与外核的能量比更为接近,因此可以推断其驱动机制较自驱动模式更为合理可靠.  相似文献   

18.
Various possibilities are currently under discussion to explain the observed weakness of the intrinsic magnetic field of planet Mercury. One of the possible dynamo scenarios is a dynamo with feedback from the magnetosphere. Due to its weak magnetic field, Mercury exhibits a small magnetosphere whose subsolar magnetopause distance is only about 1.7 Hermean radii. We consider the magnetic field due to magnetopause currents in the dynamo region. Since the external field of magnetospheric origin is antiparallel to the dipole component of the dynamo field, a negative feedback results. For an αΩ-dynamo, two stationary solutions of such a feedback dynamo emerge: one with a weak and the other with a strong magnetic field. The question, however, is how these solutions can be realized. To address this problem, we discuss various scenarios for a simple dynamo model and the conditions under which a steady weak magnetic field can be reached. We find that the feedback mechanism quenches the overall field to a low value of about 100–150 nT if the dynamo is not driven too strongly.  相似文献   

19.
Abstract

The paper explores some of the many facets of the problem of the generation of magnetic fields in convective zones of declining vigor and/or thickness. The ultimate goal of such work is the explanation of the magnetic fields observed in A-stars. The present inquiry is restricted to kinematical dynamos, to show some of the many possibilities, depending on the assumed conditions of decline of the convection. The examples serve to illustrate in what quantitative detail it will be necessary to describe the convection in order to extract any firm conclusions concerning specific stars.

The first illustrative example treats the basic problem of diffusion from a layer of declining thickness. The second adds a buoyant rise to the field in the layer. The third treats plane dynamo waves in a region with declining eddy diffusivity, dynamo coefficient, and large-scale shear. The dynamo number may increase or decrease with declining convection, with an increase expected if the large-scale shear does not decline as rapidly as the eddy diffusivity. It is shown that one of the components of the field may increase without bound even in the case that the dynamo number declines to zero.  相似文献   

20.
Abstract

Calculations are presented for the evolution of a magnetic field which is subject to the effect of three-dimensional motions in a convecting layer of highly conducting fluid with hexagonal symmetry. The back reaction of the field on the motions via the Lorentz force is neglected. We consider cases where the imposed field is either vertical or horizontal. In the former case, flux accumulates at cell centres, with subsidiary concentrations at the vertices of the pattern. In the latter, topological asymmetries between up- and down-moving fluid regions generate positive flux at the base of the layer and negative flux at the top, though the system is actually an amplifier rather than a self-excited dynamo. Spiral field lines form in the interiors of the cells, and the phenomenon of “flux expulsion” found in two-dimensional solutions is somewhat altered when the imposed field is horizontal. Applications for stellar magnetic fields include a possible mechanism for burying flux at the base of a convection zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号