首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

One of the central unsolved theoretical problems of the large scale ocean circulation is concerned with explaining the very large transports measured in western boundary currents such as the Gulf Stream and the Kuroshio. The only theory up to now that can explain the size of these transports is that of non-linear recirculation in which the advective terms in the momentum equations became important near the western boundary. In this paper an alternative explanation is suggested. When bottom topography and baroclinic effects are included in a wind-driven ocean model it is shown that the western boundary current can have a transport larger than that predicted from the wind stress distribution even when the nonlinear advective terms are ignored. The explanation lies in the presence of pressure torques associated with bottom topography which can contribute to the vorticity balance in the same sense as the wind stress curl.

Three numerical experiments have been carried out to explore the nature of this process using a three dimensional numerical model. The first calculation is done for a baroclinic ocean of constant depth, the second for a homogeneous ocean with an idealized continental slope topography, and the third for a baroclinic ocean with the same continental slope topography. The nature of the vorticity balance and of the circulation around closed paths is examined in each case, and it is shown that bottom pressure torques lead to enhanced transport in the western boundary current only for the baroclinic case with variable depth.  相似文献   

2.
Abstract

The flow in a mechanically driven thin barotropic rotating fluid system is analysed. The linear theory of Baker and Robinson (1969) is modified and extended into the non-linear regime.

An internal parameter, the “local Rossby number”, is indicative of the onset of nonlinear effects. If this parameter is 0(1) then inertial effects are as important as Coriolis accelerations in the interior of the transport-turning western boundary layer and both of its Ekman layers. The inertial effects in the Ekman layers, ignored in previous explorations of non-linear wind driven oceanic circulation, are retained here and calculated using an approximation of the Oseen type. The circulation problem is reduced to a system of scalar equations in only two independent variables; the system is valid for non-small local Rossby number provided only that the approximate total vorticity is positive.

To complete the solution for small Rossby number a boundary condition for the inertially induced transport is needed. It is found by examining the dynamics controlling this additional transport from the western boundary layer as the transport recirculates through the rest of the ocean basin. The strong constraint of total recirculation within the western boundary layer (zero net inertial transport) is derived.

The calculated primary inertial effects are in agreement with the observations of the laboratory model of Baker and Robinson (1969).

The analysis indicates the extent to which three-dimensional non-linear circulation can be reduced to a two dimensional problem.  相似文献   

3.
The process-based morphodynamic model Delft3D-MOR and the idealized model of schuttelaars and De Swart (2000) are compared with each other. The differences between the two models in their mathematical-physical formulation as well as the boundary conditions are identified. Their effect on producing cross-sectionally averaged morphological equilibria of tidal inlets with arbitrary length and forced at the seaward boundary by a prescribed M2 and M4 sea- surface elevation is studied and an inventory is made of all relevant differences. The physical formulations in the source code of Delft3D-MOR are modified in various steps to resemble the formulations in the idealized model. The effect of each of the differences between the idealized and process-based model are studied by comparing the results of the idealized model to those of the adapted process-based model. The results of the idealized model can be qualitatively reproduced by the process-based model as long as the same morphological boundary condition is applied at the open sea end. This means that the simplifications concerning the mathematical formulation of the physical processes in the idealized model can be justified. Furthermore, it can be inferred that the morphological boundary condition at the open sea end is an essential element in controlling the behaviour of morphodynamic models for tidal inlets and estuaries.Responsible Editor: Jens Kappenberg  相似文献   

4.
The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM) anisotropic Ohm’s law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD) simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances) appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential , the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute by solving the equation that is the IM Ohm’s law boundary condition. Then is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary conditions for the MHD simulation which is then used to compute a new field-aligned current density. This process is iterated at each time step. The required Hall and Pedersen conductances may be determined by any method of choice, and may be specified anew at each time step. In this sense the coupling between the ionosphere and magnetosphere may be taken into account in a self-consistent manner.  相似文献   

5.

The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry consists of four rectangular compartments, each with a uniform depth, associated with the ocean, tidal inlets and basin. The water motion, forced by an incoming Kelvin wave at the ocean’s open boundary and satisfying the linear shallow water equations on the f -plane with linearised bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. The analysis of resulting equilibrium configurations is done using flow diagrams.

Model results show that internally generated spatial variations in the water motion are essential for the existence of stable equilibria with two inlets open. In the hydrodynamic model used in the paper, both radiation damping into the ocean and basin depth effects result in these necessary spatial variations. Coriolis effects trigger an asymmetry in the stable equilibrium cross-sectional areas of the inlets. Furthermore, square basin geometries generally correspond to significantly larger equilibrium values of the inlet cross-sections. These model outcomes result from a competition between a destabilising (caused by inlet bottom friction) and a stabilising mechanism (caused by spatially varying local pressure gradients over the inlets).

  相似文献   

6.
Abstract

In a recent paper, Buchwald (1972a) has shown that besides the kinetic energy and gravitational potential energy usually associated with planetary waves in an ocean of uniform depth it is useful to define also a “spin energy”, associated with the rotation.

The present paper is basically an extension of Buchwald's result to a uniformly rotating β-plane ocean of variable depth. As in the previous work, energy conservation equations are derived and the separate energies shown to be independently conserved over the total volume of the ocean. The time-averaged energies are further shown to be propagated in the direction of the group velocity and to satisfy the equipartition rule.

Unlike Buchwald, however, we need not consider the boundary conditions in order to achieve these results. Furthermore, the use of a more realistic ocean configuration admits the possibility of a multiply connected region in the present of mean currents.

Finally, there is a physical explanation for the appearance of a spin energy in a rotating system.  相似文献   

7.
The eastern boundary of the North Atlantic subtropical gyre (NASG) is an upwelling favorable region characterized by a mean southward flow. The Canary Upwelling Current (CUC) feeds from the interior ocean and flows south along the continental slope off NW Africa, effectively providing the eastern boundary condition for the NASG. We follow a joint approach using slope and deep-ocean data together with process-oriented modeling to investigate the characteristics and seasonal variability of the interior–coastal ocean connection, focusing on how much NASG interior water drains along the continental slope. First, the compiled sets of data show that interior central waters flow permanently between Madeira and the Iberian Peninsula at a rate of 2.5?±?0.6 Sv (1 Sv = 106 m3 s-1 109 km s-1), with most of it reaching the slope and shelf regions north of the Canary Islands (1.5?±?0.7?Sv). Most of the water entering the African slope and shelf regions escapes south between the easternmost Canary Islands and the African coast: In 18 out of 22 monthly realizations, the flow was southward (?0.9?±?0.4?Sv) although an intense flow reversal occurred usually around November (1.7?±?0.9?Sv), probably as the result of a late fall intensification of the CUC north of the Canary Islands followed by instability and offshore flow diversion. Secondly, we explore how the eastern boundary drainage may be specified in a process-oriented one-layer quasigeostrophic numerical model. Non-zero normal flow and constant potential vorticity are alternative eastern boundary conditions, consistent with the idea of anticyclonic vorticity induced at the boundary by coastal jets. These boundary conditions cause interior water to exit the domain at the boundary, as if recirculating through the coastal ocean, and induce substantial modifications to the shape of the eastern NASG. The best model estimate for the annual mean eastward flow north of Madeira is 3.9?Sv and at the boundary is 3.3?Sv. The water exiting at the boundary splits with 1?Sv flowing into the Strait of Gibraltar and the remaining 2.3?Sv continuing south along the coastal ocean until the latitude of Cape Ghir. The model also displays significant wind-induced seasonal variability, with a maximum connection between the interior and coastal oceans taking place in autumn and winter, in qualitative agreement with the observations.  相似文献   

8.
The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry consists of four rectangular compartments, each with a uniform depth, associated with the ocean, tidal inlets and basin. The water motion, forced by an incoming Kelvin wave at the ocean’s open boundary and satisfying the linear shallow water equations on the f -plane with linearised bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. The analysis of resulting equilibrium configurations is done using flow diagrams. Model results show that internally generated spatial variations in the water motion are essential for the existence of stable equilibria with two inlets open. In the hydrodynamic model used in the paper, both radiation damping into the ocean and basin depth effects result in these necessary spatial variations. Coriolis effects trigger an asymmetry in the stable equilibrium cross-sectional areas of the inlets. Furthermore, square basin geometries generally correspond to significantly larger equilibrium values of the inlet cross-sections. These model outcomes result from a competition between a destabilising (caused by inlet bottom friction) and a stabilising mechanism (caused by spatially varying local pressure gradients over the inlets).  相似文献   

9.
Abstract

Convection in large bodies of water open to the atmosphere is studied as a two-layer system, which allows for the accurate modeling of the interfacial boundary conditions. The Biot number associated with the heat transfer across the interface becomes a result of the analysis rather than a condition. The linear and nonlinear analyses yield essentially the same stability results, providing a sharp stability limit.  相似文献   

10.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

11.
Abstract

This paper presents an analytical, two-dimensional model of the wind-induced homogeneous circulation near the edge of an ice pack floating on the ocean surface. It is shown that a vertical shear layer arises under the ice edge, by which the wind-driven geostrophic motion in the open ocean is matched to the flow region underneath the ice. As in coastal upwelling models, this shear layer consists of a thin E 1/2-layer inside a thicker E 1/4-layer (E being the Ekman number). Under certain conditions the shear layer produces a vertical mass flux from the bottom to the surface Ekman layer. Near the surface this upwelling flux is concentrated in the narrow E 1/2-layer. Comparison with observations of upwelling at the edge of a polar ice pack shows good agreement.  相似文献   

12.
This paper discusses the variability of surface currents around Sekisei Lagoon using a nested grid ocean circulation model. We developed a triple-nested grid system that consists of a coarse-resolution (1/60° or ∼1.85 km) model off Taiwan, an intermediate-resolution (1/300° or ∼370 m) model around the Yaeyama Islands, and a fine-resolution (1/900° or ∼123 m) model of Sekisei Lagoon. The nested grid system was forced by wind and heat flux calculated from six-hourly atmospheric reanalysis data and integrated over the period from May to July 2003. The coarse-resolution model was driven by lateral boundary conditions calculated from daily ocean reanalysis data to include realistic variation of the Kuroshio and mesoscale eddies with spatial scales of ∼500–700 km in the open ocean. The tidal forcing was included in the intermediate-resolution model by interpolating sea level data obtained from a data-assimilative tidal model. The results were then used to drive the fine-resolution model to simulate the surface water circulation around Sekisei lagoon. Model results show that (1) currents inside the lagoon are mainly driven by tide and wind; (2) there exists a strong southwestward current along the bottom slope in the southeast portion of the lagoon; the current is mainly driven by remote mesoscale eddies and at times intensified by the local wind; (3) the flow relaxation scheme is effective in reducing biases along the open boundaries. The simulated currents were used to examine the retention and dispersion of passive particles in the surface layer. Results show that the surface dispersion in the strong open ocean current region is significantly higher than that inside the lagoon.  相似文献   

13.
The reduction of the microhardness and the crystal constants of some non-metallic materials, such as calcite, dolomite, antigorite, etc., are observed after a short time of hydrogen permeating treatment at low pressure. It means that hydrogen diffusion can cause their strength dropping or weakening. The hydrogen, which is produced under the earth by various chemical reactions or accumulated when the earth formed, is migrating up continuously along faults, causing weakening of rocks and faults at the same time. So it is possible that rocks and faults break under lower tectonic stress condition. Hydrogen anomalies are passive reflection, precursor and accompaniment of fault activities or earthquakes on the face of it, but hydrogen migrating has active influence on faults and its moving. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 229–235, 1992.  相似文献   

14.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

15.
Estimating vertical velocity in the oceanic upper layers is a key issue for understanding ocean dynamics and the transport of biogeochemical elements. This paper aims to identify the physical sources of vertical velocity associated with sub-mesoscale dynamics (fronts, eddies) and mixed-layer depth (MLD) structures, using (a) an ocean adaptation of the generalized Q-vector form of the ω-equation deduced from a primitive equation system which takes into account the turbulent buoyancy and momentum fluxes and (b) an application of this diagnostic method for an ocean simulation of the Programme Océan Multidisciplinaire Méso Echelle (POMME) field experiment in the North-Eastern Atlantic. The approach indicates that w-sources can play a significant role in the ocean dynamics and strongly depend on the dynamical structure (anticyclonic eddy, front, MLD, etc.). Our results stress the important contribution of the ageostrophic forcing, even under quasi-geostrophic conditions. The turbulent w-forcing was split into two components associated with the spatial variability of (a) the buoyancy and momentum (Ekman pumping) surface fluxes and (b) the MLD. Process (b) represents the trapping of the buoyancy and momentum surface energy into the MLD structure and is identified as an atmosphere/oceanic mixed-layer coupling. The momentum-trapping process is 10 to 100 times stronger than the Ekman pumping and is at least 1,000 times stronger than the buoyancy w-sources. When this decomposition is applied to a filamentary mixed-layer structure simulated during the POMME experiment, we find that the associated vertical velocity is created by trapping the surface wind-stress energy into this structure and not by Ekman pumping.  相似文献   

16.
Cox  C. 《Surveys in Geophysics》1980,4(1-2):137-156
This review concentrates on the uncertainties surrounding interpretation of sea floor impedance measurements. Oceanic motionally induced signals prove to be noise generators which limit the low frequency range of usable signals. At high frequencies the screening by a thick ocean and by the sediments and rocks of layer two present insuperable barriers to detection of poorly conducting rocks in the depth range 2 to 30 km below the sea bottom by usual methods. The conductivity of this layer is important for the interpretation of all ocean impedance measurements because it determines the width of a boundary zone at the continental margins of the ocean. If the conductivity is as low as 10–5 S/m the bounding zone begins to fill the whole ocean. It is suggested that use of an active, manmade EM source can provide signals at the sea bottom capable of resolving the uncertainty.  相似文献   

17.
An important part of the influence of the oceans on the atmosphere is through direct radiation, sensible heat flux and release of latent heat of evaporation, whereby all of these processes are directly related to the surface temperature of the oceans. A main effect of the atmosphere on the oceans is through momentum exchange at the air-ocean interface, and this process is directly related to the surface wind stress. The sea surface temperature (SST) and the surface wind stress are the two important components in the air-ocean system. If SST is given, a thermally forced boundary layer atmospheric circulation can be simulated. On the other hand, if the surface wind stress is given, the wind-driven ocean waves and ocean currents can be computed.The relationship between SST and surface wind is a coupling of the atmosphere and the oceans. It changes a one-way effect (ocean mechanically driven by atmosphere, or atmosphere thermally forced by oceans) into two-way air-sea interactions. Through this coupling the SST distribution, being an output from an ocean model, leads to the thermally forced surface winds, which feeds back into the ocean model as an additional forcing.Based on Kuo's planetary boundary layer model a linear algebraic equation is established to link the SST gradient with the thermally forced surface wind. The surface wind blows across the isotherms from cold to warm region with some deflection angle to the right (left) in the Northern (Southern) Hemisphere. Results from this study show that the atmospheric stratification reduces both the speed and the deflection angle of the thermally forced wind, however, the Coriolis' effect increases the wind speed in stable atmosphere (Ri>10–4) and increases the deflection angle.  相似文献   

18.
The paper starts with a discussion of the linear stochastic theory of ocean waves and its various nonlinear extensions. The directional spectrum, with its unique dispersion relation connecting frequency (ω) and wavenumber (k), is no longer valid for nonlinear waves, and examples of $\left( \mathbf{k},\omega\right) The paper starts with a discussion of the linear stochastic theory of ocean waves and its various nonlinear extensions. The directional spectrum, with its unique dispersion relation connecting frequency (ω) and wavenumber (k), is no longer valid for nonlinear waves, and examples of ( k,w)\left( \mathbf{k},\omega\right) -spectra based on analytical expressions and computer simulations of nonlinear waves are presented. Simulations of the dynamic nonlinear evolution of unidirectional free waves using the nonlinear Schr?dinger equation and its generalizations show that components above the spectral peak have larger phase and group velocities than anticipated by linear theory. Moreover, the spectrum does not maintain a thin well-defined dispersion surface, but rather develops into a continuous distribution in ( k,w)\left( \mathbf{k,}\omega\right) -space. The majority of existing measurement systems rely on linear theory for the interpretation of their data, and no measurement systems are currently able to measure the full spectrum in the open ocean with high accuracy. Nevertheless, there exist a few low-resolution systems where data may be interpreted within a minimal assumption of a non-restricted ( k,w)\left( \mathbf{k,}\omega\right) -spectrum. The theory is reviewed, and analyses based on conventional spectral analysis as well as a directional wavelet analysis are carried out on data from a compact laser array at the Ekofisk field in the North Sea. The investigation confirms the strong impact of the second order spectrum below the spectral peak, but is non-conclusive about the off-set in the support of the first order spectrum seen in the dynamical simulations.  相似文献   

19.
20.
The resonances of tides in the coupled open ocean and shelf are modeled by a mechanical analogue consisting of a damped driven larger mass and spring (the open-ocean) connected to a damped smaller mass and spring (the shelf). When both masses are near resonance, the addition of even a very small mass can significantly affect the oscillations of the larger mass. The influence of the shelf is largest if the shelf is resonant with weak friction. In particular, an increase of friction on a near-resonant shelf can, perhaps surprisingly, lead to an increase in ocean tides. On the other hand, a shelf with large friction has little effect on ocean tides. Comparison of the model predictions with results from numerical models of tides during the ice ages, when lower sea levels led to a much reduced areal extent of shelves, suggests that the predicted larger tidal dissipation then is related to the ocean basins being close to resonance. New numerical simulations with a forward global tide model are used to test expectations from the mechanical analogue. Setting friction to unrealistically large values in Hudson Strait yields larger North Atlantic M2M2 amplitudes, very similar to those seen in a simulation with the Hudson Strait blocked off. Thus, as anticipated, a shelf with very large friction is nearly equivalent in its effect on the open ocean to the removal of the shelf altogether. Setting friction in shallow waters throughout the globe to unrealistically large values yields even larger open ocean tidal amplitudes, similar to those found in simulations of ice-age tides. It thus appears that larger modeled tides during the ice ages can be a consequence of enhanced friction in shallower water on the shelf in glacial times as well as a reduced shelf area then. Single oscillator and coupled oscillator models for global tides show that the maximum extractable power for human use is a fraction of the present dissipation rate, which is itself a fraction of global human power consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号