首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The paper provides an in-depth exploration of the role of particle crushing on particle kinematics and shear banding in sheared granular materials. As a two-dimensional approximation, a crushable granular material may be represented by an assembly of irregularly shaped polygons to include shape diversity of realistic granular materials. Particle assemblies are subjected to biaxial shearing under flexible boundary conditions. With increasing percentage of crushed particles, mesoscale deformation becomes increasingly unstable. Fragmented deformation patterns within the granular assemblies are unable to form stable and distinct shear bands. This is confirmed by the sparsity of large fluctuating velocities in highly crushable assemblies. Without generating distinct shear bands, deformation patterns and failure modes of a highly crushable assembly are similar to those of loose particle assemblies, which are regarded as diffuse deformation. High degrees of spatial association amongst the kinematical quantities confirm the key role that non-affine deformation and particle rotation play in the generation of shear bands. Therefore, particle kinematical quantities can be used to predict the onset and subsequent development of shear zones, which are generally marked by increased particle kinematic activity, such as intense particle rotation and high granular temperature. Our results indicate that shear band thickness increases, and its speed of development slows down, with increasing percentage of crushed particles. As particles crush, spatial force correlation becomes weaker, indicating a more diffuse nature of force transmission across particle contacts.  相似文献   

2.
The mechanical behavior of granular materials is characterized by strong nonlinearity and irreversibility. These properties have been differently described by a variety of constitutive models. To test any constitutive model, experimental data relative to the nature of the incremental stress–strain response of the material is desirable. However, this type of laboratory data is scarce because of being expensive and difficult to obtain. The discrete element method has been used several times as an alternative to obtain incremental responses of granular materials. Crushable grains add one extra source of irreversibility to granular materials. Crushability has been variously incorporated into different constitutive models. Again, it will be helpful to obtain incremental responses of crushable granular materials to test these models, but the experimental difficulties are increased. Making use of a recently introduced crushing model for discrete element simulation, this paper presents a new procedure to obtain incremental responses in discrete analogs of granular crushable materials. The parallel probe approach, previously used for uncrushable discrete analogs, is here extended to account for the presence of crushable grains. The contribution of grain crushing to the incremental irreversible strain is identified and separately measured. Robustness of the proposed method is examined in detail, paying particular attention to aspects such as dynamic instability or crushing localization. The proposed procedure is later applied to map incremental responses of a discrete analog of Fontainebleau sand on the triaxial plane. The effect of stress ratio and granular state on plastic flow characteristics is highlighted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The expansion of cylindrical and spherical cavities in sands is modelled using similarity solutions. The conventional Mohr–Coulomb failure criterion and the state parameter sand behaviour model, which enables hardening–softening, are used in the analysis. The sand state is defined in terms of a new critical state line, designed to account for the three different modes of compressive deformation observed in sands across a wide range of stresses including particle rearrangement, particle crushing and pseudoelastic deformation. Solutions are generated for cavities expanded from zero and finite radii and are compared to those solutions where a conventional critical state line has been used. It is shown that for initial states typical of real quartz sand deposits, pseudoelastic deformation does not occur around an expanding cavity. Particle crushing does occur at these states and causes a reduction in the stress surrounding the cavity. This has major implications when using cavity expansion theory to interpret the cone penetration test and pressuremeter test. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.

In granular soils grain crushing reduces dilatancy and stress obliquity enhances crushability. These are well-supported specimen-scale experimental observations. In principle, those observations should reflect some peculiar micromechanism associated with crushing, but which is it? To answer that question the nature of crushing-induced particle-scale interactions is here investigated using an efficient DEM model of crushable soil. Microstructural measures such as the mechanical coordination number and fabric are examined while performing systematic stress probing on the triaxial plane. Numerical techniques such as parallel and the newly introduced sequential probing enable clear separation of the micromechanical mechanisms associated with crushing. Particle crushing is shown to reduce fabric anisotropy during incremental loading and to slow fabric change during continuous shearing. On the other hand, increased fabric anisotropy does take more particles closer to breakage. Shear-enhanced breakage appears then to be a natural consequence of shear-enhanced fabric anisotropy. The particle crushing model employed here makes crushing dependent only on particle and contact properties, without any pre-established influence of particle connectivity. That influence does not emerge, and it is shown how particle connectivity, per se, is not a good indicator of crushing likelihood.

  相似文献   

5.
Stress–dilatancy relations have played a crucial role in the understanding of the mechanical behaviour of soils and in the development of realistic constitutive models for their response. Recent investigations on the mechanical behaviour of materials with crushable grains have called into question the validity of classical relations such as those used in critical state soil mechanics. In this paper, a method to construct thermodynamically consistent (isotropic, three‐invariant) elasto‐plastic models based on a given stress–dilatancy relation is discussed. Extensions to cover the case of granular materials with crushable grains are also presented, based on the interpretation of some classical model parameters (e.g. the stress ratio at critical state) as internal variables that evolve according to suitable hardening laws. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
颗粒破碎对颗粒材料宏观力学行为有重要影响。 结合Hardin的破碎经验公式,将表征破碎程度的破碎参量与Cosserat连续体的内部长度参数相关联,形成一个基于Cosserat连续体且能考虑颗粒破碎的弹塑性模型。数值算例主要考察了颗粒破碎对颗粒材料承载能力、塑性应变及局部化行为的影响,数值结果表明,颗粒破碎主要发生在剪切带内,颗粒破碎使得剪切带明显变窄且剪切带内外等效塑性应变梯度明显增大。  相似文献   

7.
It is well known that the compressibility of crushable granular materials increases with the moisture content,due to the decrease of particle strength in a humid environment.An existing approach to take into account the effect of grain breakage in constitutive modeling consists in linking the evolution of the grain size distribution to the plastic work.But how the material humidity can affect this relationship is not clear,and experimental evidence is quite scarce.Based on compression tests on dry and saturated crushable sand recently reported by the present authors,a new non-linear relationship is proposed between the amount of particle breakage and the plastic work.The expression contains two parameters:(1)a material constant dependent on the grain characteristics and(2)a constant depending on the wetting condition(in this study,dry or saturated).A key finding is that the relationship does not depend on the stress path and,for a given wetting condition,only one set of parameters is necessary to reproduce the results of isotropic,oedometric,and triaxial compression tests.The relationship has been introduced into an elastoplastic constitutive model based on the critical state concept with a double yield surface for plastic sliding and compression.The breakage ratio is introduced into the expression of the elastic stiffness,the critical state line and the hardening compression pressure.Incremental stress-strain computations with the model allow the plastic work to be calculated and,therefore,the evolution of particle crushing can be predicted through the proposed non-linear relationship and reintroduced into the constitutive equations.Accurate predictions of the experimental results in terms of both stress-strain relationships and breakage ratio were obtained.  相似文献   

8.
9.
This article presents a fundamental study on the role of particle breakage on the shear behavior of granular soils using the three‐dimensional (3‐D) discrete element method. The effects of particle breakage on the stress ratio, volumetric strain, plastic deformation, and shear failure behavior of dense crushable specimens undergoing plane strain shearing conditions are thoroughly investigated through a variety of micromechanical analyses and mechanism demonstrations. The simulation of a granular specimen is based on the effective modeling of realistic fracture behavior of single soil particles, which is demonstrated by the qualitative agreement between the results from platen compression simulations and those from physical laboratory tests. The simulation results show that the major effects of particle breakage include the reduction of volumetric dilation and peak stress ratio and more importantly the plastic deformation mechanisms and the shear failure modes vary as a function of soil crushability. Consistent macro‐ and micromechanical evidence demonstrates that shear banding and massive volumetric contraction depict the two end failure modes of a dense specimen, which is dominated by particle rearrangement–induced dilation and particle crushing–induced compression, respectively, with a more general case being the combination and competition of the two failure modes in the medium range of soil crushability and confining stress. However, it is further shown that a highly crushable specimen will eventually develop a shear band at a large strain because of the continuous decay of particle breakage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
颗粒大小对颗粒材料力学行为影响初探   总被引:1,自引:0,他引:1  
戴北冰  杨峻  周翠英 《岩土力学》2014,35(7):1878-1884
利用一种特殊颗粒材料-玻璃珠进行了一系列室内直剪试验,研究颗粒大小对颗粒材料力学行为的影响。试验一共考虑了3条近乎平行的级配曲线和4种颗粒摩擦情况:干燥状态、水浸润状态、水淹没状态和油浸润状态。试验结果表明,颗粒大小对颗粒材料的力学行为有显著影响,剪胀性随着粒径的增大而增强。为考虑颗粒大小对剪胀性的影响,提出了一种新的剪胀关系式。在该剪胀关系式中,剪胀系数为依赖于颗粒大小和颗粒摩擦等颗粒基本性质的变量。试验研究同时表明临界状态摩擦角随着颗粒大小的增加而增加。此外,从颗粒细观运动的角度提出了颗粒滑动的功能模型,推导出了功能方程,并以此揭示了颗粒大小对临界状态摩擦角影响的细观机制。  相似文献   

11.
为探讨颗粒形状对粒状材料的颗粒破碎演化规律及强度特征的影响,提出了一个新的粒状材料颗粒形状量化参数,设计了一种考虑三维颗粒形状的人工试样制备方法,随即进行了常规三轴压缩试验,并分析了颗粒破碎和强度特征,最终建立了一个二元介质强度准则,具体的研究成果为:建立颗粒形状量化参数——球形模量GM,在此基础上制备了5种不同形状的可破碎粒状材料三轴试样,并发现球形模量影响着粒状材料的三轴压缩强度特征;通过筛分确定试样的颗粒破碎情况,对试样的颗粒破碎演化规律和临界状态进行探讨,发现颗粒形状通过影响颗粒破碎规律而控制着宏观强度的非线性演化特征;以二元介质理论为基础,建立了考虑颗粒形状的可破碎粒状材料强度准则,并通过试验对其适用性进行了验证。  相似文献   

12.
秦建敏  迟璐璐 《岩土力学》2013,34(5):1508-1514
剪胀性是颗粒材料在加载过程中表现出来的重要变形特性。以孔隙胞元描述颗粒材料内部结构的最小单元,通过对单个孔隙胞元进行剪切受力分析,探讨了剪切过程中颗粒材料体积的改变对应力比和单个孔隙胞元形状的依赖关系,解释了排列密实的颗粒材料在剪切过程中先压缩后剪胀的微观机制。用离散元数值模拟得到了在双轴剪切过程中单个孔隙胞元形状以及孔隙胞元体积变形的演化过程。离散元数值结果表明,加载过程中孔隙胞元形状由初始各向同性到沿大主应力方向变大变长、体积变形先压缩后膨胀,并且体积变形在加载过程中存在局部化现象,体积变化大的孔隙胞元在较大变形时,排列成倾斜的窄带。综合孔隙胞元的受力分析和离散元数值结果表明,致密排列颗粒材料的剪胀性与微观尺度上孔隙胞元的几何结构及其内部的力链传递方式密切相关。  相似文献   

13.
A three-dimensional discrete element model is used to investigate the effect of grain crushing on the tip resistance measured by cone penetration tests (CPT) in calibration chambers. To do that a discrete analogue of pumice sand, a very crushable microporous granular material, is created. The particles of the discrete model are endowed with size-dependent internal porosity and crushing resistance. A simplified Hertz–Mindlin elasto-frictional model is used for contact interaction. The model has 6 material parameters that are calibrated using one oedometer test and analogies with similar geomaterials. The calibration is validated reproducing other element tests. To fill a calibration chamber capable of containing a realistic sized CPT the discrete analogue is up-scaled by a factor of 25. CPT is then performed at two different densities and three different confinement pressures. Cone tip resistance in the crushable material is practically insensitive to initial density, as had been observed in previous physical experiments. The same CPT series is repeated but now particle crushing is disabled. The ratios of cone tip resistance between the two types of simulation are in good agreement with previous experimental comparisons of hard and crushable soils. Microscale exploration of the models indicates that crushing disrupts the buttressing effect of chamber walls on the cone.  相似文献   

14.
秦建敏  张洪武 《岩土力学》2010,31(12):3697-3703
存在临界状态是颗粒材料的一个重要特性。基于孔隙胞元的颗粒离散元方法对二维颗粒体进行双轴加载数值试验,在详细分析数值模拟结果的基础上,从微观几何组构的角度揭示了临界状态的存在机制。基于剪胀性原理,提出了以接触价键表征的微观临界状态理论模型,得到了接触价键与塑性剪切应变的关系表达式,理论模型的结果和二维离散元数值模拟得到的结果吻合较好。通过比较不同情况下数值结果和理论模型中的参数,得到以下结论:表征微观临界状态的参数(临界接触价键和达到临界状态所需要的塑性剪切应变)依赖于颗粒体的微观特性,如颗粒形状、表面摩擦性质、颗粒体的围压和初始孔隙比。  相似文献   

15.
A constitutive model for granular materials is developed within the framework of strain–hardening elastoplasticity, aiming at describing some of the macroscopic effects of the degradation processes associated with grain crushing. The central assumption of the paper is that, upon loading, the frictional properties of the material are modified as a consequence of the changes in grain size distribution. The effects of these irreversible microscopic processes are described macroscopically as accumulated plastic strain. Plastic strain drives the evolution of internal variables which model phenomenologically the changes of mechanical properties induced by grain crushing by controlling the geometry of the yield locus and the direction of plastic flow. An application of the model to Pozzolana Nera is presented. The stress–dilatancy relationship observed for this material is used as a guidance for the formulation of hardening laws. One of the salient features of the proposed model is its capability of reproducing the stress–dilatancy behaviour observed in Pozzolana Nera, for which the minimum value of dilatancy always follows the maximum stress ratio experienced by the material. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Grain crushing is commonly encountered in deep foundation engineering,high rockfill dam engineering,railway engineering,mining engineering,coastal engineering,petroleum engineering,and other geoscience application.Grain crushing is affected by fundamental soil characteristics,such as their mineral strength,grain size and distribution,grain shape,density and specimen size,and also by external factors including stress magnitude and path,loading rate and duration,degree of saturation,temperature and geochemical environment.Crushable material becomes a series of different materials with the change in its grading during grain crushing,resulting in a decrease in strength and dilatancy and an increase in compressibility.Effects of grain crushing on strength,dilatancy,deformation and failure mechanisms have been extensively investigated through laboratory testing,discrete element method(DEM)modelling,Weibull statistics,and constitutive modelling within the framework of the extended crushing-dependent critical state theory or the energy-based theory.Eleven papers summarized in this review article for this special issue addressed the above issues in grain crushing through the advanced testing and modelling.  相似文献   

17.
压力作用下颗粒发生破碎是引起砂土力学特性变化的重要因素之一, 对于钙质砂这种易破碎的材料更是如此。为进一步弄清颗粒破碎对钙质砂的应力-应变强度影响, 本文对钙质砂进行三轴固结排水剪切试验得到应力-应变曲线, 并筛分得到三轴试验前后钙质砂颗分曲线。通过引入Hardin定义的颗粒相对破碎率Br, 分析了相对密度、围压与颗粒破碎的关系及颗粒破碎对钙质砂应力-应变和抗剪强度的影响。结果表明:随围压的增大颗粒破碎增量逐渐减小, 直到破碎达到一个上限值, 此时围压和相对密度对颗粒破碎影响很小; 颗粒间的滑动标志着应力达到极限状态, 而颗粒破碎会阻碍应力达到极限状态, 在本实验中, 低围压时颗粒破碎少, 颗粒相对运动形式为滑移, 使应力-应变曲线为软化型, 高围压下颗粒破碎严重, 颗粒破碎在剪切过程中始终发生, 使应力-应变曲线呈应变硬化型; 颗粒破碎使体变从剪胀逐渐发展到剪缩, 且破碎越严重剪缩越严重; 在低围压下钙质砂强度主要由剪胀和咬合提供, 高围压下颗粒破碎严重, 剪胀消失, 咬合减小, 使峰值摩擦角减小, 抗剪强度降低。  相似文献   

18.
A new elastoplastic model is developed for rockfills within the general critical state framework incorporating the state parameter. Two state functions are proposed to characterize the evolution of volume dilation and strain softening of rockfills, and a modified breakage index based on the concept of Hardin's relative breakage is defined to describe the progressive crushing of rockfills. The nonassociated plastic flow rule is derived from a state dependent dilatancy equation, and it incorporates energy dissipation due to intrinsic nonlinear friction and particle breakage upon shearing. Thus, their couple effect on the plastic deviatoric and volumetric deformation of rockfills is taken into account in the current model. The numerical analyses are carried out for a series of drained triaxial tests on the modeled rockfills at various consolidation pressures and stress paths. The volume dilation/contraction and strain softening/hardening of rockfills are accurately predicted by the proposed model, and the particle breakage and nonlinear critical state shear strength of rockfills are also well captured. The research findings indicate that the current model is applicable to represent the complex stress–strain–volume change behavior of rockfills in general. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
考虑颗粒破碎的粗粒土剪胀性统一本构模型   总被引:2,自引:0,他引:2  
贾宇峰  迟世春  林皋 《岩土力学》2010,31(5):1381-1388
粗粒土作为无黏性散粒状材料具有状态依赖特性,土体的剪切特性受密度和应力水平影响。易破碎是粗粒土的另一个特点,颗粒破碎影响粗粒土的剪胀、内摩擦角、峰值强度和渗透系数。为了能够准确地描述粗粒土的应力-应变关系,采用初始状态参量描述粗粒土的内部状态,根据三轴试验数据建立考虑颗粒破碎耗能的应力-应变关系,采用相关联流动法则推导考虑颗粒破碎的粗粒土剪胀性“统一本构模型”,并建立初始状态参量与模型参数之间的关系。所建立的统一本构模型既考虑了颗粒破碎对剪胀、内摩擦角的影响,又考虑了剪切特性对土体初始状态的依赖。采用变异粒子群算法拟合试验曲线,确定模型参数。模型计算结果能够很好地拟合试验曲线。采用同一组参数对假定的初始状态进行模拟计算,计算结果表明,模型能够模拟不同初始密度和应力水平下粗粒土变形的一般规律。  相似文献   

20.
The shear behavior at the interface between the soil and a structure is investigated at the macroscale and particle‐scale levels using a 3‐dimensional discrete element method (DEM). The macroscopic mechanical properties and microscopic quantities affected by the normalized interface roughness and the loading parameters are analyzed. The macro‐response shows that the shear strength of the interface increases as the normalized roughness of the interface increases, and stress softening and dilatancy of the soil material are observed in the tests that feature rough interfaces. The particle‐scale analysis illustrates that a localized band characterized by intense shear deformation emerges from the contact plane and gradually expands as shearing progresses before stabilizing at the residual stress state. The thickness of the localized band is affected by the normalized roughness of the interface and the normal stress, which ranges between 4 and 5 times that of the median grain diameter. A thicker localized band is formed when the soil has a rough shearing interface. After the localized band appears, the granular material structuralizes into 2 regions: the interface zone and the upper zone. The mechanical behavior in the interface zone is representative of the interface according to the local average stress analysis. Certain microscopic quantities in the interface zone are analyzed, including the coordination number and the material fabric. Shear at the interface creates an anisotropic material fabric and leads to the rotation of the major principal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号