首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic Earth for use in geodesy   总被引:1,自引:0,他引:1  
 A synthetic Earth and its gravity field that can be represented at different resolutions for testing and comparing existing and new methods used for global gravity-field determination are created. Both the boundary and boundary values of the gravity potential can be generated. The approach chosen also allows observables to be generated at aircraft flight height or at satellite altitude. The generation of the synthetic Earth shape (SES) and gravity-field quantities is based upon spherical harmonic expansions of the isostatically compensated equivalent rock topography and the EGM96 global geopotential model. Spherical harmonic models are developed for both the synthetic Earth topography (SET) and the synthetic Earth potential (SEP) up to degree and order 2160 corresponding to a 5′×5′ resolution. Various sets of SET, SES and SEP with boundary geometry and boundary values at different resolutions can be generated using low-pass filters applied to the expansions. The representation is achieved in point sets based upon refined triangulation of a octahedral geometry projected onto the chosen reference ellipsoid. The filter cut-offs relate to the sampling pattern in order to avoid aliasing effects. Examples of the SET and its gravity field are shown for a resolution with a Nyquist sampling rate of 8.27 degrees. Received: 6 August 1999 / Accepted: 26 April 2000  相似文献   

2.
The temporal changes of the Earth’s gravity field can be observed on a global scale with low–low satellite-to-satellite tracking (SST) missions. One of the largest restrictions of the quality of low–low SST gravity fields is temporal aliasing. This study investigates the design of optimal satellite orbits for temporal gravity retrieval regarding temporal aliasing. We present a method with which optimal altitudes for the orbit of a gravity satellite mission with the goal of temporal gravity retrieval can be identified. The two basic orbit frequencies, the rates of the argument of the latitude and the ascending node, determine the mapping of the signal measured along the orbit onto the spherical harmonic (SH) spectrum. The main spectral characteristics of temporal aliasing are maxima at specific SH orders. The magnitude of the effects depends on the basic frequencies. This is analyzed with numerical low–low SST closed-loop simulations including both tidal and non-tidal background models and GRACE-like observation noise. Analyses of actual monthly GRACE solutions show that these characteristics do not depend on the low–low SST processing method. Optimal orbits are found in specific altitude bands. The best altitude bands regarding temporal aliasing for polar low Earth orbiters (LEOs) are around 301, 365, 421 and 487 km. In these bands, major aliasing effects do not occur for SH degrees and orders below 70. This study gives unique and in-depth insights into the mechanism of temporal aliasing. As it provides an important orbit design approach, it is independent of any (post-) processing method to reduce temporal aliasing.  相似文献   

3.
GOCE采用的高低卫-卫跟踪和卫星重力梯度测量技术在恢复重力场方面各有所长并互为补充,如何有效利用这两类观测数据最优确定地球重力场是GOCE重力场反演的关键问题。本文研究了联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的最小二乘谱组合法,基于球谐分析方法推导并建立了卫星轨道面扰动位T和径向重力梯度Tzz、以及扰动位T和重力梯度分量组合{Tzz-Txx-Tyy}的谱组合计算模型与误差估计公式。数值模拟结果表明,谱组合计算模型可以有效顾及各类数据的精度和频谱特性进行最优联合求解。采用61天GOCE实测数据反演的两个180阶次地球重力场模型WHU_GOCE_SC01S(扰动位和径向重力梯度数据求解)和WHU_GOCE_SC02S(扰动位和重力梯度分量组合数据求解),结果显示后者精度优于前者,并且它们的整体精度优于GOCE时域解,而与GOCE空域解的精度接近,验证了谱组合法的可行性与有效性。  相似文献   

4.
将传统直角坐标系中的滑动平均方法(包括圆周法与网格法)运用到球面重力异常分离中。模型实验及实际应用均表明,该方法优于直接截断重力场模型阶次分离异常的方法,能够更好地反映实际地质情况,不仅适用于全球区域也适用于局部区域。  相似文献   

5.
胡明城 《测绘科学》2003,28(4):66-68
为了进一步改进地球重力场模型 ,美国科学院 (NRC)于 1997年提出一个报告 ,号召美国和欧洲学者们组成一个由空间探测地球重力场委员会。他们评比了大约 10个计划的或想象的卫星重力任务 ,最后提出了 5种卫星重力任务的方案 ,称为专用重力任务。本文介绍这 5种任务的内容以及地球科学将由这些任务获得重大进展的研究领域。  相似文献   

6.
An assessment has been made of the possibility to estimate time-variable gravity from GPS-derived orbit perturbations and common-mode accelerometer observations of ESA’s GOCE Earth Explorer. A number of 20-day time series of Earth’s global long-wavelength gravity field have been derived for the period November 2009 to November 2012 using different parameter setups and estimation techniques. These techniques include a conventional approach where for each period, one set of gravity coefficients is estimated, either excluding or including empirical accelerations, and the so-called Wiese approach where higher frequency coefficients are estimated for the very long wavelengths. A principal component analysis of especially the time series of gravity field coefficients obtained by the Wiese approach and the conventional approach with empirical accelerations reveals an annual signal. When fitting this annual signal directly through the time series, the sine component (maximum in spring) displays features that are similar to well-known continental hydrological mass changes for the low latitude areas, such as mass variations in the Amazon basin, Africa and Australia for spatial scales down to 1,500 km. The cosine component (maximum in winter), however, displays large signals that can not be attributed to actual mass variations in the Earth system. The estimated gravity field changes from GOCE orbit perturbations are likely affected by missing GPS observations in case of high ionospheric perturbations during periods of increased solar activity, which is minimal in Summer and maximal towards the end of autumn.  相似文献   

7.
现代低轨卫星对地球重力场探测的实践和进展   总被引:4,自引:4,他引:4  
陈俊勇 《测绘科学》2002,27(1):8-10
综述了现代低轨卫星对地球重力场测量的特点和近况,介绍了已经和即将发射的重力卫星CHAMP、GRACE、GOCE和新型测高卫星,讨论了作为现代重力卫星首次实践--CHAMP卫星的进展和目前尚待解决的问题。  相似文献   

8.
基于动力学法反演地球重力场的基本理论,研究了卫星初始状态向量误差对应用低轨卫星精密轨道数据反演地球重力场的影响。在仅考虑低轨卫星初始状态误差的情况下进行了模拟计算,结果表明:在利用低轨卫星精密轨道数据反演地球重力场时,卫星初始状态向量误差需要重新进行估计;在目前的轨道精度水平下,若不顾及误差方程二次项的影响,反演弧长不宜过长;卫星初始状态速度误差(约1.5mm/s)的影响要大于位置误差(约10 cm)的影响。  相似文献   

9.
Whether post-glacial rebound or/and crustal variation contributes to the pattern of the Fennoscandian gravity field has been of great interest to geoscientists. Previous numerical studies are based on different Moho maps, different global Earth gravity models and different isostatic models of Pratt type, resulting in quite different conclusions.In this study, we use the improved Moho depth map of Korja et al. (1993), the OSU91A Earth gravity model and a refined modeling of the Moho depth contribution. We conclude that not more than about 40% and 30% of the Fennoscandian geoid and gravity depressions of the orders of -12m and -40 mGal might be caused by crustal thickening, leaving at least -6 m and -28 mGal to be adjusted in accordance with post-glacial rebound.  相似文献   

10.
基于$\frac{{{{\bar{P}}}_{nm}}\left( \cos \theta \right)}{\sin \theta }\left( m>0 \right)$的非奇异递推公式,给出了基于球坐标的引力矢量和垂线偏差非奇异计算公式;针对极点λ可任意取值引起的地方指北坐标系方向的不确定性问题,证明了引力矢量在转换到地心直角坐标系后不随λ的变化而变化,即与λ的取值无关。最终的数值计算结果表明,直角坐标系下的非奇异计算公式与本文提出的球坐标下的非奇异计算公式所得计算结果绝对值差异小于10-16m/s2,证明了该非奇异公式的正确性。最后总结了所有引力位球函数一阶导、二阶导非奇异性计算的一般思路。  相似文献   

11.
The estimation of the zero-height geopotential level of a local vertical datum (LVD) is a key task towards the connection of isolated physical height frames and their unification into a common vertical reference system. Such an estimate resolves, in principle, the ‘ambiguity’ of a traditional crust-fixed LVD by linking it with a particular equipotential surface of Earth’s gravity field under the presence of an external geopotential model. The aim of this paper is to study the estimation scheme that can be followed for solving the aforementioned problem based on the joint inversion of co-located GPS and leveling heights in conjunction with a fixed Earth gravity field model. Several case studies with real data are also presented that provide, for the first time, precise estimates of the LVD offsets for a number of Hellenic islands across the Aegean and Ionian Sea.  相似文献   

12.
骆鸣津  方剑 《测绘学报》2000,29(Z1):43-47
对当今地球重力学和固体潮研究中的一些值得注意或热点问题,提出了看法及解决问题的思路,其中包括重力固体潮与地震,重力与地球内部密度分布,应变固体潮的意义与作用,固体潮与地层应力,以及地球动力学与内波理论等,这些可供今后参考。  相似文献   

13.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

14.
徐义平  吴波 《测绘通报》2021,(4):126-130,155
本文分析了空间重力异常精度对水准测量高差重力异常改正的影响。在江苏两处试验区分别采用实测重力和布格异常数据库两种改正方法,计算测段重力异常改正值,对比两者间的差异。结果表明:未顾及地形起伏的实测重力点分布是导致两种改正方法改正值差异大的主要因素;地形起伏较大区域,水准线路出现转折或倾斜过大时,需加测重力,采用实测重力进行水准测量高差重力异常改正;平坦小区域内,利用布格异常数据库与实测重力进行水准测量高差重力异常改正的精度相当。  相似文献   

15.
The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth’s topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid’s surface to the Earth’s surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1′ × 1′ equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth’s topography–bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical harmonic coefficients were computed up to the third degree of the altitude, and the harmonics of the other, smaller parts up to the second degree. Their sum constitutes what we call ETOPG1, the Earth’s TOPography derived Gravity model at 1′ resolution (half-wavelength). The EGM2008 gravity field model and ETOPG1 were then used to rigorously compute 1′ × 1′ point values of surface gravity anomalies and disturbances, respectively, worldwide, at the real Earth’s surface, i.e. at the lower limit of the atmosphere. The disturbance grid is the most interesting product of this study and can be used in various contexts. The surface gravity anomaly grid is an accurate product associated with EGM2008 and ETOPO1, but its gravity information contents are those of EGM2008. Our method was validated by comparison with a direct numerical integration approach applied to a test area in Morocco–South of Spain (Kuhn, private communication 2011) and the agreement was satisfactory. Finally isostatic corrections according to the Airy model, but in spherical geometry, with harmonic coefficients derived from the sets of the ETOPO1 different parts, were computed with a uniform depth of compensation of 30?km. The new world Bouguer and isostatic gravity maps and grids here produced will be made available through the Commission for the Geological Map of the World. Since gravity values are those of the EGM2008 model, geophysical interpretation from these products should not be done for spatial scales below 5 arc minutes (half-wavelength).  相似文献   

16.
地幔纬向正常密度函数   总被引:7,自引:0,他引:7  
郝晓光  刘根友 《测绘学报》2004,33(2):105-109
继"地球纬向正常密度假说"和"板块运动纬向重力模式"的提出之后,以参数椭球为工具,应用求解"地球纬向正常密度函数"的数学方法,在假设地核为匀质椭球和地壳并入地幔的前提下,初步求解出满足极点与赤道重力条件的"地幔纬向正常密度函数",从而使得"地幔纬向密度异常"的提法在理论上获得了依据.  相似文献   

17.
分析了固体潮和海洋负荷潮对沿海基准站绝对重力测量的影响,以及利用不同海潮模型计算后的精度统计,结果表明全球海潮模型对我国沿海绝对重力测量的改正不是十分精确。并简要分析了海洋负荷潮对相对重力测量的影响。  相似文献   

18.
A radial integration of spherical mass elements (i.e. tesseroids) is presented for evaluating the six components of the second-order gravity gradient (i.e. second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven spherical topography consisting of juxtaposed vertical prisms. The method uses Legendre polynomial series and takes elastic compensation of the topography by the Earth’s surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily applied for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. An iterative least-squares inversion of measured gravity gradient coefficients is also proposed to estimate a regional set of juxtaposed topographic heights. Several tests of recovery have been made by considering simulated gradients created by idealistic conical and irregular Great Meteor seamount topographies, and for varying satellite altitudes and testing different levels of uncertainty. In the case of gravity gradients measured at a GOCE-type altitude of \(\sim \)300 km, the search converges down to a stable but smooth topography after 10–15 iterations, while the final root-mean-square error is \(\sim \)100 m that represents only 2 % of the seamount amplitude. This recovery error decreases with the altitude of the gravity gradient observations by revealing more topographic details in the region of survey.  相似文献   

19.
Integral formulas are derived for the determination of geopotential coefficients from gravity anomalies and gravity disturbances over the surface of the Earth. First order topographic corrections to spherical formulas are presented. In addition new integral formulas are derived for the determination of the external gravity field from surface gravity. Taking advantage of modern satellite positioning techniques, it is suggested that, in general, the external gravity field as well as individual coefficients are better determined from gravity disturbances than from gravity anomalies.  相似文献   

20.
Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10?8 m/s 2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号