首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highstands in the Marine Isotope Stage (MIS) 3 based on 14C dating in the Qinghai–Tibetan Plateau (QTP) are widely documented. Recent records from shoreline sediments dated using U‐series and/or optically stimulated luminescence (OSL), however, reveal that the highstands originally dated in MIS 3 should now be considered to fall in MIS 5. This paper provides new evidence from the interior of the QTP, based on the grain‐size from a continuous lake core in the Zabuye Salt Lake, to verify the MIS 5 highstand in the QTP. Grain‐size analysis of the core sediments also distinguishes two other highstands in MIS 3 and MIS 2, respectively. The MIS 5 highstand is considered as the maximum lake level since the Last Interglacial, as cored sediments contain very low values of Median Diameter (Md) during MIS 5. Compared with the discontinuous records from lake shorelines sediments, the grain‐size records from the continuous lake centre core sediments provide a more complete dataset to infer lake level variations, and make it possible to make wider palaeoclimatic and palaeoenvironmental interpretation. In the interior of the QTP, highstands might have continued into cold climate periods due to the reduced evaporation rates in the latter. The influence of the moisture‐bearing southerly‐shifted Westerly wind pathway may also have contributed to the highstands in the glacial period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Radiocarbon dating of bulk organic matter is the most commonly used method for establishing chronologies of lake sediments for palaeoclimate reconstructions on the Tibetan Plateau. However, this method is likely to be problematic because the dated material often suffers from old carbon contamination. Recently, advances in luminescence‐based chronological techniques have provided new options for dating lacustrine sediments. In the current study, we tested for the first time the applicability of a new post‐IR IRSL (pIRIR) measurement protocol for dating fine‐grained polymineral material from a deep‐lake sediment core from the central part of Tangra Yumco, on the southern Tibetan Plateau. Our results show that: (i) radioactive disequilibria in the uranium decay chain were observed in the studied lake sediments, and thus taken into account for dose rate calculation by using a dynamic modelling approach; (ii) the suitability and robustness of the pIRIR protocol measured at 150°C (pIRIR150) for our samples are confirmed by a set of luminescence characteristic tests as well as the agreement with an independent age control; (iii) turbidite deposition partly caused an insufficient resetting of luminescence signals and thus apparent overestimation in luminescence dating; (iv) compared with the luminescence‐based age‐depth model, the 14C ages of bulk organic matter from the studied core generally yielded an age difference of ~2 ka, which is attributed to hardwater reservoir effects in Tangra Yumco. This study highlights the need for multi‐dating approaches of lake sedimentary archives on the Tibetan Plateau.  相似文献   

3.
Palaeoshorelines, highstand lacustrine sediments and lakeshore terraces are preserved around saline lakes in the arid Qaidam Basin. Previous research indicates that the chronology of a mega‐paleolake in the Qaidam Basin during the late Pleisotocene is controversial. Here we report quartz optically stimulated luminescence (OSL) age estimates of highstand lacustrine sediments, shoreline features and geomorphic exposures that contribute to a revision of the lake level history of Gahai and Toson lakes in the north‐eastern Qaidam Basin, on the northeastern Qinghai–Tibetan Plateau (QTP) margin. The results imply that: (i) high lake levels at Gahai and Toson lakes based on quartz OSL dating occurred at 85–72, 63–55, 31, 5.4 and 0.9–0.7 ka, probably corresponding to periods of warm and wet climate; (ii) periods of high lake levels are almost synchronous with other lakes on the QTP (e.g. Qinghai and Namco lakes), with the highest late Pleistocene levels occurring during Marine Oxygen Isotope Stage 5; and (iii) highstand phases on the QTP are out of phase with those of low‐latitude lakes in the southern hemisphere, possibly driven by solar insolation variability in the low‐latitude region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Nam Co is the largest (1920 km2 in area) and highest (4718 m above sea level) lake in Tibet. According to the discovery of lake terraces and highstand lacustrine deposits at several places in Nam Co and its adjacent areas, the authors confirm the existence of an ancient large lake in the southeastern part of the northern Tibetan Plateau. On the basis of the U-series, 14C and ESR dating, coupled with the levelling survey of lake deposits and geomorphology, the evolutionary process of the ancient large lake in the southeastern part of the northern Tibetan Plateau may fall into three stages: (1) the ancient large lake stage at 115-40 ka BP, when the ancient lake level was 140-26 m above the level of present Nam Co; (2) the outflow lake stage at 40-30 ka BP, when the ancient level was 26-19 m above the present lake level; and (3) the Nam Co stage since 30 ka BP, when the ancient lake level was < 19 m above the present lake level. During the ancient large lake stage, a large number of modern large, medium-siz  相似文献   

5.
Late Pleistocene paleoclimatic history on northeastern Qinghai–Tibetan Plateau (QTP) has been reconstructed mainly from lake sediments; however, data regarding dry–wet climate changes reported in this region are still not clear and controversial. Based on shoreline features and highstand lacustrine sediments around lakes on the QTP, high lake level histories in this paper were summarized and compared with paleoclimatic records from lake sediments, ice core and glaciation evolution surrounding mountains on the NE QTP during late Pleistocene. The results indicate that periods of high lake level occurred at MIS 5, MIS 3 and early-middle Holocene and most likely corresponding to warm and wet climate periods, while periods of low lake level existed in intervening intervals, corresponding to cold and dry climate periods, which most likely coincide with glacial advances surrounding high mountains. With an exception, no wide glacial advance in study area was found during MIS 3, possibly suggesting that effective moisture is lower than that in the other region of NE QTP in this period.  相似文献   

6.
Vast palaeolakes once occupied the Qinghai‐Tibetan Plateau (TP). Analyses of the sedimentary records of these lakes could potentially provide an extensive dating archive. Many previously constructed age‐depth models simulating lacustrine cores have been principally based on radiocarbon (14C) dating. However, such dating could have been hampered by the so‐called ‘lake reservoir effect’ (LRE) and the reworking of lakebed sediments, resulting in inaccurate 14C age‐depth models and limiting interpretations of existing lacustrine palaeoclimatic records. Lake Linggo Co is located on the central TP, in one of the coldest and most arid regions of Tibet. We dated a 9.87‐m‐long lacustrine core extracted from the lakebed at a water depth of ~60 m using a combination of 210Pb, 14C and optically stimulated luminescence (OSL) techniques. Some 14C ages showed significant age reversals; all the 14C ages were much older than the 210Pb and OSL ages for the same depths. This could possibly be attributed to the presence of old, inherited carbon, causing the inherited 14C age to appear unstable during the deposition period. The 210Pb and OSL ages were roughly concordant, and were also consistent with the stratigraphical succession. We therefore suggest that 14C dating may, on its own, be inadequate for accurate dating of lacustrine sediment sites on the TP, and that the OSL method should also be applied in order to evaluate the reliability of any 14C ages. With this approach, we constructed an age‐depth model, revealing sedimentation rates of 1.7, 0.8, 6.8 and 0.6 mm a−1 between 0–1.9, 1.9–4.2, 4.2–4.4 and 4.4–9.4 ka, respectively.  相似文献   

7.
班戈错是因湖面阶段性下降而于晚更新世末期从母湖色林错东部分离出来的小离湖.2003年5-7月,我们对班戈湖沿岸进行了详细的地貌与第四纪地质调查,湖面高程及6条剖面湖岸阶地的水准测量,并采集了沿岸及邻区的湖相沉积物样品进行U系年龄测定.研究结果表明,班戈错湖岸阶地共6级,其中T1为与色林错分离后所形成,T2至T6的拔湖高...  相似文献   

8.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

9.
西藏纳木错末次间冰期以来的气候变迁与湖面变化   总被引:57,自引:18,他引:39       下载免费PDF全文
在西藏纳木错沿岸,发育了6级湖岸阶地及拔湖48~139.2m的高位湖相沉积.根据湖相沉积的U系法测年和孢粉分析结果,本文探讨了纳木错及邻区末次间冰期(MIS5)以来的古植被、古气候与湖面变化.研究表明,纳木错与邻区的湖面变化可以划分为116~37kaB.P.间的古大湖--"羌塘东湖"期、37~30kaB.P.间的"古纳木错"外流湖-残余古大湖期和30kaB.P.以来的纳木错-藏北湖群期等3大阶段.在MIS5的古大湖阶段,包括纳木错、色林错等藏北高原东南部的众多大、中型湖泊,是互相连通的一个大湖,其范围可能超过了现代的藏北内、外流(怒江)水系的分水岭.在MIS5e末的最高湖面时期,湖面面积可达78800km2,它或许还与藏北高原西南部和中南部的其他古大湖相连,成为面积巨大的网格状深水大湖--"羌塘湖".通过纳木错湖面变化曲线与西昆仑古里雅、格陵兰、南极等冰芯和深海岩芯的氧同位素变化曲线的对比可以发现,全球MIS5的气温要高于末次冰期间冰阶(MIS3),此时藏北高原为气候温和轻爽与湖面最高的大湖期;在末次冰期的两个冰阶(MIS4和MIS2)中,湖面明显下降,邻近的念青唐古拉山发育了小型山谷冰川;而在间冰阶MIS3中,其气候波动的幅度,要比世界其他地区更加明显,湖面波动也较大,特别是36~35kaB.P.间,气温和湿度都较今略高或较高,但不及MIS1中的全新世气候最宜时期的暖湿程度.总之,MIS5和MIS3是亚洲夏季风强烈时期,但前者的强烈程度应大于后者.  相似文献   

10.
The laminated lacustrine sediments deposited in the last glacial Lake Lisan represent annual deposits of primary aragonite and silty detritus that reflect the annual supply of bicarbonate‐bearing freshwater to the lake. A varve‐counting curve was constructed for the time interval of ca. 17.4–22 cal. ka BP based on aragonite U/Th, and atmospheric radiocarbon ages of organic debris recovered from the studied section. Radiocarbon in the primary (evaporitic) aragonite comprises both atmospheric and old carbon (reflecting the reservoir age). The aragonite reservoir ages were determined by comparing the aragonite radiocarbon dates to the varve counting curve, and are found to lie in the range 1900–600 a and display a continuous decline. This opens the possibility for high (annual) resolution monitoring of the reservoir age, similar in quality to tree ring counting, during the upper part of Marine Isotope Stage (MIS) 2. Our work also demonstrates that a ‘uniform’ reservoir age correction is inappropriate when determining the chronology of short‐term climate events in lacustrine environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
察尔汗盐湖作为柴达木盆地第四纪的沉积中心,沉积了巨厚的第四系湖相沉积,其演化历史研究对于揭示柴达木盆地及青藏高原北部第四纪古气候、古环境演变历史具有重要意义。本文在AMS 14C测年的基础上,以察尔汗盐湖晚更新世钻孔(ZK53630-1)岩芯中介形类微体化石为研究对象,通过系统的采样和室内分析,共识别出7属10种。基于分类学研究,识别出2个介形类组合(自下而上):Ilyocypris biplicata-Limnocythere inopinata和Ilyocypris bradyi-Ilyocypris sebeiensis。介形类及其伴生化石均显示察尔汗古湖在距今34~28 ka期间的晚更新世晚期(MIS 3a)主体为淡水—微咸水湖泊,气候温暖湿润,与现今极端干旱的盐湖环境截然不同。  相似文献   

12.
黄河源地区晚更新世湖泛事件及其意义   总被引:1,自引:1,他引:0  
通过青海玛多湖相地层剖面沉积特征,结合ESR样品年代测试结果,分析认为黄河源地区在13万年左右的晚更新世时期发生过湖泛事件。湖泛时期,玛多"四姐妹湖"相互连通,形成一个面积巨大的湖泊,约是现今"四姐妹湖"总面积的4.1倍。玛多地区此次湖泛事件与深海氧同位素MIS 6(Marine isotope stages 6)向MIS 5(Marine isotope stages 5)转变时期相对应,显示出青藏高原气候变化与全球气候变化密切相关,然而黄河源地区湖相地层对全球气候变化反应更敏感,记录的气候转换时间早于其他地区。玛多剖面湖相地层剖面沉积物的粒度、碳酸盐、磁化率分析表明,在132±10~128±12 ka年间,黄河源地区湖相沉积可分为9个阶段,表明青藏高原在MIS 6向MIS 5转变时期的气候变化是一个波动上升过程。13万年左右,黄河源地区大面积的湖相地层结束沉积,认为由于青藏高原共和运动,下游的多石峡被切开,湖水突然外泄所形成。   相似文献   

13.
A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ~180 ka old sedimentary succession that provides new insights into the timing and nature of erosion–sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ~180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called «Mammoth peat», previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with palaeoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history.  相似文献   

14.
The Provo shoreline of Lake Bonneville formed following the Bonneville flood, and, based on previous dating, was formed during a period of overflow from about 17.5 to 15.0 cal. ka. In many places the Provo shoreline consists of a pair of distinct shorelines, one ~3 m higher than the other. We present data from two cuts through double beaches to show that the upper beach is younger and represents sedimentation after a lake‐level rise. In addition, the lower beach deposits are internally stratified by beds that suggest three more lake‐level rises during its development. The Provo beach complex thus appears to have been built during rising lake levels, which can be explained by rises in the overflow threshold by sequential landslide deposition. Evaluation of beach altitudes demonstrates that the two beach crests throughout the Bonneville basin experienced equivalent rebound from removal of the lake load, and therefore they formed after the rebound associated with the Bonneville flood occurred in early Provo time. However, radiocarbon ages on gastropods collected within the beach deposits suggest both that the sequence of five beach deposits formed from c.18.1 to c. 17.0 cal. ka, and that the Bonneville flood occurred before 18 cal. ka. These ages are discordant with previous dates on shells within offshore sands, and raise questions about the validity of radiocarbon ages for shells in Lake Bonneville as well as about the age of the Bonneville flood and Provo shoreline. The timing for maximum Provo lake depths and its association with climate stages during deglaciation remain unresolved.  相似文献   

15.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

16.
通过对西藏海拔最高、面积最大湖泊-纳木错周缘湖相沉积、湖岸堤的野外调查和湖岸阶地的水准测量,发现在纳木错沿岸拔湖48m以下,发育有6级湖岸阶地,拔湖48~139.2m发育有高位湖相沉积。湖相沉积物的同位素测年结果表明,纳木错湖泊发育与藏北高原东南部古大湖演化可划分为3个阶段:①116~37kaB.P.间的古大湖期;②37~30kaB.P.间的外流湖期;③30kaB.P.以来的纳木错期。根据纳木错晚更新世以来湖相沉积中粘土矿物的X光衍射分析结果,以及采用比值法、高岭石法和衍射峰法的研究,探讨了粘土矿物所显示的环境变化信息。粘土矿物成分变化表明,该区已具备了寒温带干旱、半干旱区的气候环境特征。为研究青藏高原的湖泊演化、气候变化、古地理变迁及其隆升过程等提供了新资料。   相似文献   

17.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   

18.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

19.
张威  柴乐 《冰川冻土》2016,38(5):1281-1291
他念他翁山中段地处青藏高原东南部和云贵高原过渡地带,海拔4 200 m以上保存着确切的第四纪冰川遗迹.对其进行深入研究,不仅可以重建横断山脉冰川作用的演化历史,还能够为青藏高原的隆升机制提供重要依据.采用野外地貌调查与电子自旋共振测年(ESR)相结合的方法,查明他念他翁山第四纪冰川发育的地貌特点,并初步对研究区的冰期系列进行划分.结果显示,他念他翁山中段古冰川类型主要为山麓冰川、山谷冰川和冰斗冰川.晚第四纪以来至少经历了4次冰川作用,分别为倒数第二次冰期(MIS 6),年代为(192±51)~(207±45)ka;末次冰期中期(MIS 3),年代为(55±8)~(54±9)ka;末次冰盛期(MIS 2),年代为(25±1)~(38±6)ka,以及全新世新冰期/小冰期(MIS 1).  相似文献   

20.
通过对羌塘地区中部羌D1井长181·6m第四系岩芯的研究,分析湖泊沉积记录的岩相旋回和Fe/Mn和Sr/Ba等微量元素古环境参数的变化,结合样品的热释光(TL)测年数据,讨论晚更新世该区湖泊扩张和湖面升降变化过程。结果表明,晚更新世以来该区湖泊环境的演化,经历了二次湖进过程,二次湖平面上升期之间出现了一次广泛的干化低水位时期。其中15~7万年期间的湖泛事件可以在区域上进行追踪对比,它对应于深海氧同位素的第5阶段,可以作为高原中央气候转型期的标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号