首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

2.
《Basin Research》2018,30(Z1):437-451
Many prospective sedimentary basins contain a variety of extrusive volcanic products that are ultimately sourced from volcanoes. However, seismic reflection‐based studies of magmatic rift basins have tended to focus on the underlying magma plumbing system, meaning that the seismic characteristics of volcanoes are not well understood. Additionally, volcanoes have similar morphologies to hydrothermal vents, which are also linked to underlying magmatic intrusions. In this study, we use high resolution 3D seismic and well data from the Bass Basin, offshore southern Australia, to document 34 cone‐ and crater‐type vents of Miocene age. The vents overlie magmatic intrusions and have seismic properties indicative of a volcanic origin: their moderate–high amplitude upper reflections and zones of “wash‐out” and velocity pull‐up beneath. The internal reflections of the vents are similar to those found in lava deltas, suggesting they are composed of volcaniclastic material. This interpretation is corroborated by data from exploration wells which penetrated the flanks of several vents. We infer that the vents we describe are composed of hyaloclastite and pyroclasts produced during submarine volcanic eruptions. The morphology of the vents is typical of monogenetic volcanoes, consistent with the onshore record of volcanism on the southern Australian margin. Based on temporal, spatial and volumetric relationships, we propose that submarine volcanoes can evolve from maars to tuff cones as a result of varying magma‐water interaction efficiency. The morphologies of the volcanoes and their links to the underlying feeder systems are superficially similar to hydrothermal vents. This highlights the need for careful seismic interpretation and characterization of vent structures linked to magmatic intrusions within sedimentary basins.  相似文献   

3.
In this article, we document a large number of focused fluid escape structures using high quality 2D seismic reflection data and multibeam bathymetry data from a poorly known area at the intersection of the northern South China Sea (SCS) and the western SCS. Three types of focused fluid escape systems are identified and described: mud volcanoes, pipes and associated pockmarks. The mud volcanoes occur singly or as clustered groups. The overpressure driving the mud volcanism is argued herein to be related to the generation of thermogenic hydrocarbons. The clustered distributions are related to localized tectonic uplift in the basin. Pipes mainly occur within the Guangle Uplift or accompany the mud volcano clusters. The pipes located within the Guangle Uplift are attributed to carbonate dissolution caused by hydrothermal fluids. Fluids ascended through these structures and were expelled at the palaeo‐seabed or present seabed forming palaeo‐pockmarks and present‐day pockmarks. Some ‘mega‐pockmarks’ show evidence of enlargement due to bottom currents. The marginal basins of the SCS are petroliferous, with attention gradually shifting to the deep‐water area. Our results show that fluid migration must be taken into account when assessing seabed stability. This analysis also improves our understanding the petroleum geology in the study area, and is also useful for predicating where chemosynthetic ecosystems may be located.  相似文献   

4.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

5.
Interpretation of long‐offset 2D depth‐imaged seismic data suggests that outer continental margins collapse and tilt basinward rapidly as rifting yields to seafloor spreading and thermal subsidence of the margin. This collapse post‐dates rifting and stretching of the crust, but occurs roughly ten times faster than thermal subsidence of young oceanic crust, and thus is tectonic and pre‐dates the ‘drift stage’. We term this middle stage of margin development ‘outer margin collapse’, and it accords with the exhumation stage of other authors. Outer continental margins, already thinned by rifting processes, become hanging walls of crustal‐scale half grabens associated with landward‐dipping shear zones and zones of low‐shear strength magma at the base of the thinned crust. The footwalls of the shear zones comprise serpentinized sub‐continental mantle that commonly becomes exhumed from beneath the embrittled continental margin. At magma‐poor margins, outer continental margins collapse and tilt basinward to depths of about 3 km subsea at the continent–ocean transition, often deeper than the adjacent oceanic crust (accreted later between 2 and 3 km). We use the term ‘collapse’ because of the apparent rapidity of deepening (<3 Myr). Rapid salt deposition, clastic sedimentation (deltaic), or magmatism (magmatic margins) may accompany collapse, with salt thicknesses reaching 5 km and volcanic piles 1525 km. This mechanism of rapid salt deposition allows mega‐salt basins to be deposited on end‐rift unconformities at global sea level, as opposed to deep, air‐filled sub‐sea depressions. Outer marginal collapse is ‘post‐rift’ from the perspective of faulting in the continental crust, but of tectonic, not of thermal, origin. Although this appears to be a global process, the Gulf of Mexico is an excellent example because regional stratigraphic and structural relations indicate that the pre‐salt rift basin was filled to sea level by syn‐rift strata, which helps to calibrate the rate and magnitude of collapse. We examine the role of outer marginal detachments in the formation of East India, southern Brazil and the Gulf of Mexico, and how outer marginal collapse can migrate diachronously along strike, much like the onset of seafloor spreading. We suggest that backstripping estimates of lithospheric thinning (beta factor) at outer continental margins may be excessive because they probably attribute marginal collapse to thermal subsidence.  相似文献   

6.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

7.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

8.
《Basin Research》2017,29(Z1):131-155
Intermontane basins are illuminating stratigraphic archives of uplift, denudation and environmental conditions within the heart of actively growing mountain ranges. Commonly, however, it is difficult to determine from the sedimentary record of an individual basin whether basin formation, aggradation and dissection were controlled primarily by climatic, tectonic or lithological changes and whether these drivers were local or regional in nature. By comparing the onset of deposition, sediment‐accumulation rates, incision, deformation, changes in fluvial connectivity and sediment provenance in two interrelated intermontane basins, we can identify diverse controls on basin evolution. Here, we focus on the Casa Grande basin and the adjacent Humahuaca basin along the eastern margin of the Puna Plateau in northwest Argentina. Underpinning this analysis is the robust temporal framework provided by U‐Pb geochronology of multiple volcanic ashes and our new magnetostratigraphical record in the Humahuaca basin. Between 3.8 and 0.8 Ma, ~120 m of fluvial and lacustrine sediments accumulated in the Casa Grande basin as the rate of uplift of the Sierra Alta, the bounding range to its east, outpaced fluvial incision by the Río Yacoraite, which presently flows eastward across the range into the Humahuaca basin. Detrital zircon provenance analysis indicates a progressive loss of fluvial connectivity from the Casa Grande basin to the downstream Humahuaca basin between 3 and 2.1 Ma, resulting in the isolation of the Casa Grande basin from 2.1 Ma to <1.7 Ma. This episode of basin isolation is attributed to aridification due to the uplift of the ranges to the east. Enhanced aridity decreased sediment supply to the Casa Grande basin to the point that aggradation could no longer keep pace with the rate of the surface uplift at the outlet of the basin. Synchronous events in the Casa Grande and Humahuaca basins suggest that both the initial onset of deposition above unconformities at ~3.8 Ma and the re‐establishment of fluvial connectivity at ~0.8 Ma were controlled by climatic and/or tectonic changes affecting both basins. Reintegration of the fluvial network allowed subsequent incision in the Humahuaca basin to propagate upstream into the Casa Grande basin.  相似文献   

9.
The seismically and volcanically active Kivu Rift, in the western branch of the East African Rift System, is a type locale for studies of high‐elevation, humid‐climate rift basins, as well as magmatic basin development. Interpretations of offshore multi‐channel seismic (MCS) reflection data, terrestrial radar topography, lake bathymetry and seismicity data recorded on a temporary array provide new insights into the structure, stratigraphy and evolution of the Kivu rift. The Kivu rift is an asymmetric graben controlled on its west side by a ca. 110 km‐long, N‐S striking border fault. The southern basins of the lake and the upper Rusizi river basin are an accommodation zone effectively linking 1470 m‐high Lake Kivu to 770 m‐high Lake Tanganyika. MCS data in the eastern Kivu lake basin reveal a west‐dipping half graben with at least 1.5 km of sedimentary section; most of the ca. 2 km of extension in this sub‐basin is accommodated by the east‐dipping Iwawa normal fault, which bounds an intrabasinal horst. Lake Kivu experienced at least three periods of near desiccation. The two most recent of these approximately correlate to the African Megadrought and Last Glacial Maximum. There was a rapid lake level transgression of at least 400 m in the early Holocene. The line load of the Virunga volcanic chain enhances the fault‐controlled basin subsidence; simple elastic plate models suggest that the line load of the Virunga volcanic chain depresses the basin by more than 1 km, reduces flank uplift locally and broadens the depocentre. Not only do the voluminous magmatism and degassing to the lake pose a hazard to the riparian population, but our studies demonstrate that magmatism has important implications for short‐term processes such as lake levels, inflow and outlets, as well as long term modification of classic half‐graben basin morphology.  相似文献   

10.
《Basin Research》2017,29(2):149-179
Integrated analysis of high‐quality three‐dimensional (3D) seismic, seabed geochemistry, and satellite‐based surface slick data from the deep‐water Kwanza Basin documents the widespread occurrence of past and present fluid flow associated with dewatering processes and hydrocarbon migration. Seismic scale fluid flow phenomena are defined by seep‐related seafloor features including pockmarks, mud or asphalt volcanoes, gas hydrate pingoes, as well as shallow subsurface features such as palaeo‐pockmarks, direct hydrocarbon indicators (DHIs), pipes and bottom‐simulating reflections (BSRs). BSR‐derived shallow geothermal gradients show elevated temperatures attributed to fluid advection along inclined stratigraphic carrier beds around salt structures in addition to elevated shallow thermal anomalies above highly conductive salt bodies. Seabed evidences of migrated thermogenic hydrocarbons and surface slicks are used to differentiate thermogenic hydrocarbon migration from fluid flow processes such as dewatering and biogenic gas migration. The analysis constrains the fluid plumbing system defined by the three‐dimensional distribution of stratigraphic carriers and seal bypass systems through time. Detailed integration and iterative interpretation have confirmed the presence of mature source rock and effective migration pathways with significant implications for petroleum prospectivity in the post‐salt interval. Integration of seismic, seabed geochemistry and satellite data represents a robust method to document and interpret fluid flow phenomena along continental margins, and highlights the importance of integrated fluid flow studies with regard to petroleum exploration, submarine geohazards, marine ecosystems and climate change.  相似文献   

11.
《Basin Research》2018,30(1):5-19
The Chatham Rise is located offshore of New Zealand's South Island. Vast areas of the Chatham Rise are covered in circular to elliptical seafloor depressions that appear to be forming through a bathymetrically controlled mechanism, as seafloor depressions 2–5 km in diameter are found in water depths of 800–1100 m. High‐resolution P‐Cable 3D seismic data were acquired in 2013 across one of these depressions. The seafloor depression is interpreted as a mounded contourite. Our data reveal several smaller buried depressions (<20–650 m diameter) beneath the mounded contourite that we interpret as paleo‐pockmarks. These pockmarks are underlain by a complex polygonal fault system that deforms the strata and an unusual conical feature results. We interpret the conical feature as a sediment remobilization structure based on the presence of stratified reflections within the feature, RMS amplitude values and lack of velocity anomaly that would indicate a nonsedimentary origin. The sediment remobilization structure, polygonal faults and paleo‐depressions are the indicators of the past subsurface fluid flow. We hypothesize that the pockmarks provided the necessary topographic roughness for the formation of the mounded contourites thus linking fluid expulsion and the deposition of contouritic drifts.  相似文献   

12.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

13.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

14.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

15.
《Basin Research》2018,30(Z1):568-595
The continental slopes of the South China Sea (SCS), the largest marginal sea on the continental shelf of Southeast Asia, are among the most significant shelf‐margin basins in the world because of their abundant petroleum resources and a developmental history related to sea floor spreading since Late Oligocene time. Based on integrated analyses of seismic, well‐logging and core data, we systematically document the sequence architecture and depositional evolution of the northern continental slope of the SCS and reveal its responses to tectonism, sea‐level change and sediment supply. The infill of this shelf‐margin basin can be divided into seven composite sequences (CS1–CS7) that are bounded by regional unconformities. Composite sequences CS3 to CS7 have formed since Late Oligocene time, and each of them generally reflects a regional transgressive–regressive cycle. These large cycles can be further divided into 20 sequences that are defined by local unconformities or transgressive–regressive boundaries. Depositional–geomorphological systems represented on the continental slope mainly include shelf‐edge deltas, prodelta‐slope fans, clinoforms of the shelf‐margin slope, unidirectionally migrating slope channels, incised slope valleys, muddy slope fans, slope slump‐debris‐flow complexes and large‐scale soft‐sediment deformation of bedding. Changing sea levels, reflected by evidence from sequence architecture in the study area, are generally comparable with those of the Haq (1987) global sea level curve, whereas the regional transgressions and regressions were apparently controlled by tectonic uplift and subsidence. Composite sequences CS3 and CS4 formed from Late Oligocene to Middle Miocene time and represent continental‐slope deposition during a time of northwest‐northeast seafloor spreading and subsequent development of sub‐basins in the southwest‐central SCS. The development of composite sequences CS5 to CS7 after Middle Miocene time was obviously influenced by the Dongsha Movement during convergence between the SCS and Philippine Sea plates. Climatic variations and monsoon intensification may have enhanced sediment supply during Late Oligocene‒Early Miocene (25–21 Ma) and Late Pliocene‒Pleistocene (3–0.8 Ma) times. This study indicates that shelf‐edge delta and associated slope fan systems are the most important oil/gas‐bearing reservoirs in the SCS continental‐slope area.  相似文献   

16.
Understanding the relationships between sedimentation, tectonics and magmatism is crucial to defining the evolution of orogens and convergent plate boundaries. Here, we consider the lithostratigraphy, clastic provenance, syndepositional deformation and volcanism of the Almagro‐El Toro basin of NW Argentina (24°30′ S, 65°50′ W), which experienced eruptive and depositional episodes between 14.3 and 6.4 Ma. Our aims were to elucidate the spatial and temporal record of the onset and style of the shortening and exhumation of the Eastern Cordillera in the frame of the Miocene evolution of the Central Andes foreland basin. The volcano‐sedimentary sequence of the Almagro‐El Toro basin consists of lower red floodplain sandstones and siltstones, medial non‐volcanogenic conglomerates with localised volcanic centres and upper volcanogenic coarse conglomerates and breccia. Coarse, gravity flow‐dominated (debris‐flow and sheet‐flow) alluvial fan systems developed proximal to the source area in the upper and medial sequence. Growing frontal and intrabasinal structures suggest that the Almagro‐El Toro portion of the foreland basin accumulated on top of the eastward‐propagating active thrust front of the Eastern Cordillera. Synorogenic deposits indicate that the shortening of the foreland deposits was occurring by 11.1 Ma, but conglomerates derived from the erosion of western sources suggest that the uplift and erosion of this portion of the Eastern Cordillera has occurred since ca.12.5 Ma. An unroofing reconstruction suggests that 6.5 km of rocks were exhumed. A tectono‐sedimentary model of an episodically evolving thick‐skinned foreland basin is proposed. In this frame, the NW‐trending, transtensive Calama–Olacapato–El Toro (COT) structures interacted with the orogen, influencing the deposition and deformation of synorogenic conglomerates, the location of volcanic centres and the differential tilt and exhumation of the foreland.  相似文献   

17.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

18.
The Petrified Forest of Lesbos comprises silicified tree fossils at multiple stratigraphic levels within the Lower Miocene Sigri Pyroclastic Formation. Our objective was to understand the interplay of tectonic setting, structural evolution, volcanological setting and basin evolution in the preservation of this remarkable natural monument. Sections were logged for lithology, sedimentary structures and hydrothermal alteration. Orientations of fallen fossil trees were measured. Samples were taken for mineralogical and geochemical analysis. 40Ar/39Ar dating was carried out on mineral separates from four samples. Widespread andesite‐dacite domes, the Eressos Formation, intrude and overlie metamorphic basement and are overlain by the Sigri Pyroclastic Formation, which comprises several hundreds of metres of pyroclastic flow tuffs (unwelded ignimbrites) interbedded with fluvial conglomerate and volcaniclastic sandstone. The Sigri Pyroclastic Formation ranges in age from 21.5 to 22 Ma, where it overlies the lacustrine Gavathas Formation, to younger than 18.4 Ma. Tuffs and fluvial conglomerates in the Sigri Pyroclastic Formation coarsen eastwards, and petrified trees and soil horizons occur throughout the Formation. The recurrence of pyroclastic flows was approximately one every 20 ka, so destructive flows were relatively infrequent, allowing the development of climax vegetation between most eruptions. Conglomerate‐filled channels show that rivers flowed westwards. Tree fall directions indicate NW to N movement of pyroclastic flows, implying a source near the younger Mesotopos–Tavari caldera to the south. The basin, which formed in a NNE‐trending dextral strike‐slip regime, provided some topographic steering. Following the Sigri Pyroclastic Formation at ca. 18 Ma, there was a rapid increase in the pace of volcanic activity, with the eruption of thick lava sequences and welded ignimbrites, and intrusion of dykes and laccoliths in SW Lesbos. Rapid burial by permeable tuffs, silica from alteration of volcanic ash, and later hydrothermal circulation all contributed to the preservation of the petrified trees.  相似文献   

19.
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.  相似文献   

20.
《Basin Research》2018,30(3):544-563
Previous research demonstrates that large basins on the periphery of the northern edge of the Tibetan Plateau were partitioned during development of intrabasin mountain ranges. These topographic barriers segregated basins with respect to surface flow and atmospheric circulation, ponded sediments, and formed rain shadows. However, complex mixing between airmasses and nonsystematic isotope‐elevation lapse rates have hampered application of quantitative paleoaltimetry to determine the timing of development of critical topographic barriers. We address the timing and drivers for changes in surface connectivity and atmospheric circulation in the Linxia and Xunhua basins using a multidisciplinary approach incorporating detrital zircon geochronology, Monte Carlo inverse flexural modelling, and published stable isotope data. Disruption of surface flow between the two basins during exhumation of the Jishi Shan preceded development of topography sufficient to intercept moisture‐bearing airmasses. Detrital zircon data point to disruption of an eastward‐flowing axial fluvial network between 14.7 and 13.1 Ma, coincident with the onset of exhumation in the Jishi Shan. Flexural modelling suggests that by 13 Ma, the Jishi Shan had developed 0.3 ± 0.1 km of relief; sufficient to disrupt eastward‐flowing drainage networks but insufficient to intercept moisture‐bearing airmasses. Stable isotope data indicate that, although surface connections between the Xunhua and Linxia basins were broken, the two basins continued to be dominated by a common climate regime until 9.3 Ma. Subsequent reintegration of surface flow between the basins occurred between 9.3 and 7.6 Ma. Divergence in the stable isotope and depositional environment records between the two basins suggests that at 9.3 Ma the paleo‐Yellow River breached the growing Jishi Shan dam, and may have reintegrated surface flow between the two basins via erosion of the modern Yellow River gorge, which transects the Jishi Shan. The reintegration of the Xunhua and Linxia basins’ surface connection is confirmed by reintroduction of a Songpan‐Ganzi flysch sediment source by 7.6 Ma. Continued exhumation and uplift of the Jishi Shan developed 0.8 ± 0.2 km of relief by ca. 8 Ma capable of intercepting moisture‐bearing airmasses; isolating and increasing aridity in the Xunhua Basin while decreasing it in the Linxia Basin. Our findings point to protracted development of the modern ca. 1 km of relief in the Jishi Shan between 14 and ca. 4.5 Ma followed by attainment of a topographic equilibrium which persists into modern times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号