首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Knowledge of the glaciation of central East Iceland between 15 and 9 cal. ka BP is important for the understanding of the extent, retreat and dynamics of the Icelandic Ice Sheet. Crucially, it is not known if the key area of Fljótsdalur‐Úthérað carried a fast‐flowing ice stream during the Last Glacial Maximum; the timing and mode of deglaciation is unclear; and the history and ages of successive lake‐phases in the Lögurinn basin are uncertain. We use the distribution of glacial and fluvioglacial deposits and gradients of former lake shorelines to reconstruct the glaciation and deglaciation history, and to constrain glacio‐isostatic age modelling. We conclude that during the Last Glacial Maximum, Fljótsdalur‐Úthérað was covered by a fast‐flowing ice stream, and that the Lögurinn basin was deglaciated between 14.7 and 13.2 cal. ka BP at the earliest. The Fljótsdalur outlet glacier re‐advanced and reached a temporary maximum extent on two separate occasions, during the Younger Dryas and the Preboreal. In the Younger Dryas, about 12.1 cal. ka BP, the outlet glacier reached the Tjarnarland terminal zone, and filled the Lögurinn basin. During deglaciation, a proglacial lake formed in the Lögurinn basin. Through time, gradients of ice‐lake shorelines increased as a result of continuous but non‐uniform glacio‐isostatic uplift as the Fljótsdalur outlet glacier retreated across the Valþjófsstaður terminal zone. Changes in shoreline gradients are defined as a function of time, expressed with an exponential equation that is used to model ages of individual shorelines. A glaciolacustrine phase of Lake Lögurinn existed between 12.1 and 9.1 cal. ka BP; as the ice retreated from the basin catchment, a wholly lacustrine phase of Lake Lögurinn commenced and lasted until about 4.2 cal. ka BP when neoglacial ice expansion started the current glaciolacustrine phase of the lake.  相似文献   

2.
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum.  相似文献   

3.
The glacial history in the topographically confined paleo-ice stream drainage route of Vestfjorden, North Norway, was analysed based on bathymetric data, high-resolution seismology and 14C AMS-dated gravity cores. The inner part of the fjord is characterised by axial-parallel mega-scale lineations whereas the outer part is dominated by two marginal morainal bank systems. The Værøy (inner) and Røst (outer) marginal moraine systems comprise several transverse, zigzag-shaped ridges. Seismic records show thrusted and folded sediment blocks within the ridges. The landforms are inferred to reflect basal processes and the transition from warm-based (inner fjord) to cold-based (outer fjord) conditions, i.e. fast flow followed by basal freeze-on, sediment deformation and morainal bank formation. The moraines formed during the final part of two paleo-ice sheet re-advances. 14C AMS dating indicates a maximum age of 13.7 14C ka BP (16.2 cal ka BP) for the Røst system whereas the Værøy system is inferred to be slightly older than 12.5 14C ka BP (14.5 cal ka BP). This demonstrates that the northern part of the Fennoscandian Ice Sheet behaved in a much more dynamic way during the early deglaciation than previously assumed.  相似文献   

4.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

5.
The ‘forgotten fjords’ and ‘deserted inlets’ of NE‐Iceland, in the region between Borgarfjörður Eystri and Loðmundarfjörður, are not only prominent because of their pristine landscape, their alleged elfin settlements, and the puffins that breed in the harbour, but also for their magnificent geology. From a geological point of view, the area may hold Iceland's best kept geological secret. The greater Borgarfjörður Eystri area hosts mountain chains that consist of voluminous and colourful silicic rocks that are concentrated within a surprisingly small area (Fig. 1 ), and that represent the second‐most voluminous occurrence of silicic rocks in the whole of Iceland. In particular, the presence of unusually large volumes of ignimbrite sheets documents extremely violent eruptions during the Neogene, which is atypical for this geotectonic setting. As a group of geoscientists from Uppsala University (Sweden) and the Nordic Volcanological Center (NordVulk, Iceland) we set out to explore this remote place, with the aim of collecting material that may allow us to unravel the petrogenesis of these large volumes of silicic rocks. This effort could provide an answer to a long‐standing petrological dilemma; the question of how silicic continental crust is initially created. Here we document on our geological journey, our field strategy, and describe our field work in the remote valleys of NE‐Iceland.  相似文献   

6.
Uummannaq Fjord, West Greenland, held the Uummannaq Ice Stream system that drained an estimated ~6% of the Greenland Ice Sheet (GrIS) during the Last Glacial Maximum. Published ages for the final deglaciation in Uummannaq Fjord vary from as early as c. 9.8 ka to as late as c. 5.3 ka. Assessing this variability requires additional chronological controls to improve the deglaciation history of central West Greenland. Here, we combine 14C dating of lake sediment cores with cosmogenic 10Be exposure dating at sites adjacent to the present GrIS margin in the central‐inland sector of the Uummannaq Fjord system. We find that ice retreated to or within the present GrIS margin at 10.8±0.2 ka (n = 6). Although this ‘final deglaciation’ to or within the present GrIS margin across the Uummannaq Fjord system varies from c. 10.8 to 5.3 ka, all chronologies indicate collapse from the continental shelf to the inner fjords at c. 11.0 ka, which occurred at a net retreat rate of 300–1100 m a−1. The Uummannaq Fjord system deglaciated c. 1000 years earlier than the major fjord system to the south, Disko Bugt. However, similarly rapid retreat rates of the two palaeo‐ice stream systems suggest that their collapse may have been aided by high calving rates. The asynchronous deglaciation of the GrIS throughout the Uummannaq Fjord system probably relates to the influence of varying fjord geometry on marine glacier behaviour.  相似文献   

7.
We present 23 cosmogenic surface exposure ages from 10 localities in southern Sweden. The new 10Be ages allow a direct correlation between the east and west coasts of southern Sweden, based on the same dating technique, and provide new information about the deglaciation of the Fennoscandian Ice Sheet in the circum‐Baltic area. In western Skåne, southernmost Sweden, a single cosmogenic surface exposure sample gave an age of 16.8±1.0 ka, whereas two samples from the central part of Skåne gave ages of 17.0±0.9 and 14.1±0.8 ka. Further northeast, in southern Småland, two localities gave ages ranging from 15.2±0.8 to 16.9±0.9 ka (n=5) indicating a somewhat earlier deglaciation of the area than has previously been suggested. Our third locality, in S Småland, gave ages ranging from 10.2±0.5 to 18.4±1.6 ka (n=3), which are probably not representative of the timing of deglaciation. In central Småland one locality was dated to 14.5±0.8 ka (n=3), whereas our northernmost locality, situated in northern Småland, was dated to 13.8±0.8 ka (n=3). Samples from the island of Gotland suggest deglaciation before 13 ka ago. We combined the new 10Be ages with previously published deglaciation ages to constrain the deglaciation chronology of southern Sweden. The combined deglaciation chronology suggests a rather steady deglaciation in southern Sweden starting at c. 17.9 cal. ka BP in NW Skåne and reaching northern Småland, ~200 km further north, c. 13.8 ka ago. Overall the new deglaciation ages agree reasonably well with existing deglaciation chronologies, but suggest a somewhat earlier deglaciation in Småland.  相似文献   

8.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   

10.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

11.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

12.
The volcanic island of Jan Mayen, remotely located in the Norwegian-Greenland Sea, was covered by a contiguous ice cap during the Late Weichselian. Until now, it has been disputed whether parts of the island south of the presently glaciated Mount Beerenberg area were ever glaciated. Based on extensive field mapping we demonstrate that an ice cap covered all land areas and likely also extended onto the shallow shelf areas southeast and east of the island. Chronological interpretations are based on K-Ar and 40Ar/39Ar dating of volcanic rocks, cosmogenic nuclide (36Cl) surface exposure dating of bedrock and glacial erratics, and radiocarbon dating. We argue that ice growth started after 34 ka and that an initial deglaciation started some 21.5–19.5 ka in the southern and middle parts of the island. In the northern parts, closer to the present glaciers, the deglaciation might have started later, as evidenced by the establishment of vegetation 17–16 cal. ka BP. During full glaciation, the ice cap was likely thickest over the southern part of the island. This may explain a seemingly delayed deglaciation compared with the northern parts despite earlier initial deglaciation. In a broader context, the new knowledge of the Late Weichselian of the island contributes to the understanding of glaciations surrounding the North Atlantic and its climate history.  相似文献   

13.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Large and complete glaciotectonic sequences formed by marine‐terminating glaciers are rarely observed on land, hampering our understanding of the behaviour of such glaciers and the processes operating at their margins. During the Late Weichselian in western Iceland, an actively retreating marine‐terminating glacier resulted in the large‐scale deformation of a sequence of glaciomarine sediments. Due to isostatic rebound since the deglaciation, these formations are now exposed in the coastal cliffs of Belgsholt and Melabakkar‐Ásbakkar in the Melasveit district, and provide a detailed record of past glacier dynamics and the inter‐relationships between glaciotectonic and sedimentary processes at the margin of this marine‐terminating glacier. A comprehensive study of the sedimentology and glaciotectonic architecture of the coastal cliffs reveals a series of subaquatic moraines formed by a glacier advancing from Borgarfjörður to the north of the study area. Analyses of the style of deformation within each of the moraines demonstrate that they were primarily built up by ice‐marginal/proglacial thrusting and folding of marine sediments, as well as deposition and subsequent deformation of ice‐marginal subaquatic fans. The largest of the moraines exposed in the Melabakkar‐Ásbakkar section is over 1.5 km wide and 30 m high and indicates the maximum extent of the Borgarfjörður glacier. Generally, the other moraines in the series become progressively younger towards the north, each designating an advance or stillstand position as the glacier oscillated during its overall northward retreat. During this active retreat, glaciomarine sediments rapidly accumulated in front of the glacier providing material for new moraines. As the glacier finally receded from the area, the depressions between the moraines were infilled by continued glaciomarine sedimentation. This study highlights the dynamics of marine‐terminating glaciers and may have implications for the interpretation of their sedimentological and geomorphological records.  相似文献   

15.
The timing and causes of the last deglaciation in the southern tropical Andes is poorly known. In the Central Altiplano, recent studies have focused on whether this tropical highland was deglaciated before, synchronously or after the global last glacial maximum (~21 ka BP). In this study we present a new chronology based on cosmogenic 3He (3Hec) dating of moraines on Cerro Tunupa, a volcano that is located in the centre of the now vanished Lake Tauca (19.9°S, 67.6°W). These new 3Hec ages suggest that the Tunupa glaciers remained close to their maximum extent until 15 ka BP, synchronous with the Lake Tauca highstand (17–15 ka BP). Glacial retreat and the demise of Lake Tauca seem to have occurred rapidly and synchronously, within dating uncertainties, at ~15 ka BP. We took advantage of the synchronism of these events to combine a glacier model with a lake model in order to reconstruct precipitation and temperature during the Lake Tauca highstand. This new approach indicates that, during the Tauca highstand (17–15 ka BP), the centre of the Altiplano was characterized by temperature ~6.5 °C cooler and average precipitation higher by a factor ranging between ×1.6 and ×3 compared to the present. Cold and wet conditions thus persisted in a significant part of the southern tropical Andes during the Heinrich 1 event (17–15 ka BP). This study also demonstrates the extent to which the snowline of glaciers can be affected by local climatic conditions and emphasizes that efforts to draw global climate inferences from glacial extents must also consider local moisture conditions.  相似文献   

16.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

17.
The deglaciation history of the Malangen‐Målselv fjord and valley area proximally to the Tromsø‐Lyngen (Younger Dryas) moraine at Bakkejord, Malangen, northern Norway, is reconstructed based on morphostratigraphic, lithostratigraphic and geophysical evidence, and 25 radiocarbon dates from marine shells and foraminifera. The results show that following the Skarpnes event c. 12 200 14Cyr BP, and prior to the Younger Dryas readvance, the area was deglaciated at least as far as Sandmo situated 22 km proximally to the Tromsø‐Lyngen moraine. Two moraine ridges crossing the fjord at Sandmo and buried beneath thick glaciomarine sediments are correlated with this period. The area was subsequently deglaciated between 10 300 and 9200 14Cyr BP, following the Tromsø‐Lyngen (Younger Dryas) readvance. Five ice‐front accumulations post‐dating the Tromsø‐Lyngen moraine and situated 19, 27, 42, 55 and 77 km behind it are identified and dated based on radiocarbon dates and correlation of marine limits: Målsnes (c. 10 050 14Cyr BP), Kjerresnes (c. 10 000 14Cyr BP), Solli (c. 9750 14Cyr BP), Bardufoss‐Brentmoen‐Storskogmoen (c. 9600–9700 14Cyr BP) and Alapmoen (c. 9200 Cyr BP). The largest of these, at Bardufoss‐Storskogmoen, possibly accumulated as a response to an ice advance. Fourteen dates of apparent late Allerød/Younger Dryas age (11 100–10 000 14Cyr BP), obtained from fossils in glaciomarine sediments in the Målselv valley up to 77 km proximally to the Tromsø‐Lyngen moraine, are interpreted as postdating rather than predating this moraine. Several of these are considered to be too old because of uncertain reservoir age, carbon‐dating plateaus and/or contamination. This highlights uncertainties associated with radiocarbon‐dating and the profound effect such uncertainties may have on interpreting geological events.  相似文献   

18.
Evidence of a dynamic Holocene glacial history is preserved in the terrestrial and marine archives of St. Jonsfjorden, a small fjord‐system on the west coast of Spitsbergen, Svalbard. High‐resolution, remotely sensed imagery from marine and terrestrial environments was used to construct geomorphological maps that highlight an intricate glacial history of the entire fjord‐system. The geomorphology and stratigraphy indicate an early Holocene local glacier advance constrained to the Lateglacial–early Holocene transition. Identification and 14C dating of the thermophilous bivalve mollusc Modiolus modiolus to 10.0±0.12 cal. ka BP suggest a rapid northward migration of the species shortly after deglaciation. Further evidence enhances the understanding of the onset and subsequent climax of the Neoglacial‐Little Ice Age in inner St. Jonsfjorden. The present‐day terminus of Osbornebreen, the dominating glacier system in St. Jonsfjorden, is located over 8.5 km up‐fjord from its Neoglacial maximum extent. Cross‐cutting relationships suggest subsequent advances of all the smaller glaciers in the area following the break‐up of Osbornebreen. Glacial deposits, landforms and their cross‐cutting relationships observed in both terrestrial and marine settings imply a complex and highly dynamic environment through the later part of the Holocene.  相似文献   

19.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号