首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recurrent coastal upwelling is recognized as one of the main factors promoting the exceptionally high productivity of the Humboldt Current System. Herein, we study time series data of gross primary production (2003-2006) and its fluctuation in relation to seasonal changes in the light and nutrient field of the Concepción upwelling ecosystem. Concurrent measurements of gross primary production, community respiration, bacterial secondary production, and sedimentation rates allowed a characterization of the main carbon fluxes and pathways in the study area. The integrated values of gross primary production were higher during the upwelling period (>1 g C m−2 d−1; October-April; that is, early spring to early austral fall). Seasonal changes in the system were also reflected in community respiration, organic matter sedimentation, and bacterial production rates, which varied along with the gross primary production. The significant correlation between gross primary production and community respiration (Spearman, r = 0.7; p < 0.05; n = 18) reflected an important degree of coupling between organic matter formation and its usage by the microplanktonic community during periods when gross primary production/community respiration were highly similar. Higher gross primary production values (>6 g C m−2 d−1) were consistently associated with maximum biomass levels of Skeletonema costatum and Thalassiosira subtilis. We observed a positive correlation between gross primary production and the sedimentation of intact diatom cells (Spearman, r = 0.5, p < 0.05, n = 17). Our data suggest that, in the Concepción upwelling ecosystem, bacteria utilize an important fraction of the gross primary production. If our interpretations are correct, they leave unanswered the question of how the system supports the extremely high fish biomass levels, therein pointing out the system’s limited capacity to buffer the evasion of CO2 following upwelling.  相似文献   

2.
The spatial and temporal abundances of limno-tolerant and halo-tolerant bacteria were investigated in the tide-dominated Mandovi estuary along the west coast of India. These investigations were carried out in relation to various environmental parameters on a monthly basis at three fixed stations for a year. On an annual basis, the estuary showed an average salinity of 28.2, 17.4, and 12.6 at the mouth, midstream and upstream region. Halo-tolerant retrievable count (HTRC) and limno-tolerant retrievable count (LTRC) of bacteria were in the order of 106 L−1. Among the environmental parameters, a strong negative relationship between salinity and nitrate (r = −0.806; p < 0.001) suggested that 64% of the variation could be due to fresh water influence in the estuary. The limno-tolerant retrievable count (LTRC) brought about 23% variations in nitrate concentration. This influence was maximum during the monsoon (r = 0.522; p < 0.05) especially in the surface waters (r = 0.624; p < 0.001) suggesting nitrate reduction by LTRC. Measurements of nitrate reducing activity (NRA) in whole-water samples along the salinity gradient in the estuary also revealed higher reduction rates at lower salinity upstream. This was further confirmed by culture experiments where the limno-tolerant bacteria showed higher NRA than halo-tolerant forms. It is therefore suggested that LTRC is more actively involved in the variation of nitrate that enters the Mandovi estuary particularly during the monsoon.  相似文献   

3.
From January 2003 to December 2004 microphytobenthic primary production was estimated both from in situ (MPPs) and in the laboratory (MPPp) 14C-incubation of slurries collected in a coastal site of the Gulf of Trieste (northern Adriatic Sea). MPPs values varied from −7.54 ± 3.12 to 34.59 ± 7.66 mg C m−2 h−1 over the whole period. The lowest MPPs were observed in November 2003 and August 2004, while the highest MPPs in July 2003 and May 2004, in correspondence with high PAR at the bottom. Significant correlations between MPPs and the microphytobenthic biomass (BIOM) (r = 0.75, p < 0.001), between MPPs and PAR at the bottom (r = 0.54, p < 0.01) and between MPPs and OXY (r = 0.50, p < 0.05) were revealed. MPPp values were higher than MPPs ones in 15 out of 23 observations, with the highest MPPp recorded in July 2003. At 17 m depth a seasonal pattern of sampling months was revealed by the cluster analysis. The role of abiotic parameters in determining this seasonal pattern was highlighted by the PCA, with the first axis correlated with MPPs and PAR, and the second one with temperature. Applying the fuzzy sets it resulted that spring months showed a higher degree of membership with MPPs, summer months with temperature and autumn–winter months with OXY. The microphytobenthic community did not seem to be photosynthetically active throughout the study period. From August–September to December low or negative MPPs values were recorded. We infer that during these months a shift from the autotrophic to heterotrophic metabolism of the benthic microalgae occurred in correspondence with low PAR and/or high temperature at the bottom. Despite the progressive lowering of the trophy of the study area occurred during the last 20 years, we found higher primary production values than those estimated two decades earlier.  相似文献   

4.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   

5.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

6.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

7.
Spatial and temporal variations in particle-bound pesticide contamination, natural environmental variables, and benthic abundance were measured during the dry summer season within a temporarily open estuary (Lourens River). This study focused on the effect of particle-associated pesticides on the dynamics of the benthic community (including epi-benthic, hyper-benthic, and demersal organisms) by comparing two runoff events, differing in their change in pesticide concentration and environmental variables. The two chosen sites were situated within the upper and middle reaches of the estuary and differ significantly in salinity (p = 0.001), flow (p = 0.5), temperature (p < 0.001) and particulate organic carbon in the sediment (p < 0.001). Generally higher particle-bound pesticides were found in the upper reaches.  相似文献   

8.
In order to test the hypothesis that the ambient iron concentrations could regulate sulfate reducing activity (SRA) in mangrove areas, 10 cm cores were examined from test and reference sites. The test site at Diwar mangrove ecosystem is highly influenced by iron released by the movement of barges carrying iron ore during the non-monsoon seasons and the reference site at Tuvem is relatively pristine. The average iron concentrations were 17.9% (±8.06) at Diwar and 6.3% (±1.5) at Tuvem. Sulfate reducing rates (SRR) ranged from 50.21 to 698.66 nM cm−3 d−1 at Tuvem, and from 23.32 to 294.49 nM cm−3d−1 in Diwar. Pearson’s correlation coefficients between SRR and environmental parameters showed that at Tuvem, the SRR was controlled by SO4−2 (r = 0.498, p < 0.001, n = 60) more than organic carbon (r = 0.316 p < 0.05, n = 60). At Diwar, the SRR was governed by the iron concentrations at an r-value of −0.761 (p < 0.001, n = 60), suggesting that ca.58% of the variation in SRR was influenced negatively by variations in ambient iron concentrations. This influence was more than the positive influence of TOC (r = 0.615, p < 0.001, n = 60). Laboratory experiments to check the influence of iron on SRR also supported our field observations. At an experimental manipulation of 50 ppm Fe3+ there was an increase in SRR but at 100 ppm an inhibitory effect was observed. At 1000 ppm Fe3+ there was a decrease in the SRR up to 93% of the control. Thus, our study showed that ambient iron concentrations influence SRR negatively at Diwar and counters the positive influence of organic carbon. Consequently, the influence could cascade to other biogeochemical processes in these mangrove swamps, especially the mineralization of organic matter to carbon dioxide by sulfate respiration.  相似文献   

9.
The study of lysogeny in aquatic systems is an often overlooked aspect of microbial ecology, especially in tropical environments. Herein, the fraction of lysogenized cells (FLC) was detected in the surface waters of 20 coastal stations distributed from the eutrophicated shoreline to seaward waters of Hann Bay (Senegal). Concurrently, viral lytic infection rates were extrapolated from the frequency of visibly infected bacterial cells (FVIC), as determined from transmission electron microscopy observations. The experimental induction of prophage was observed in less than 3% of indigenous marine bacteria, suggesting that lysogenic stages of infection are rare in Hann Bay. Similarly, only 0.5–4.7% of bacteria showed visible signs of lytic infection. However, the positive correlation between the fraction of lysogenic and lytic cells (r = 0.67, p < 0.05, n = 20) may actually indicate that the coexistence of both lifestyles may be due to the massive and rapid induction of lysogens, potentially from the high levels of local UV radiation. Overall, we suggest that the determination of FVIC and FLC to examine the predominance of one type of cycle versus the other may be a source of misinterpretation in some particular aquatic environments.  相似文献   

10.
The role of microorganisms in the transfer of carbon of marine systems is very important in open oligotrophic oceans. Here, we analyze the picoplankton structure, the heterotrophic bacterioplankton activity, and the predator-prey relationships between heterotrophic bacteria and nanoflagellates during two large scale cruises in the Central Atlantic Ocean (∼29°N to ∼40°S). Latitud cruises were performed in 1995 between March-April and October-November. During both cruises we crossed the regions of different trophic statuses; where we measured different biological variables both at the surface and at the deep chlorophyll maximum (DCM). The concentration of chlorophyll a varied between 0.1 and 0.8 mg m−3, the abundance of heterotrophic bacteria varied between <1.0 × 105 and >1.0 × 106 cells ml−1, and that of heterotrophic nanoflagellates between <100 and >1.0 × 104 cells ml−1. The production of heterotrophic bacteria varied more than three orders of magnitude between <0.01 and 24 μgC L−1 d−1; and the growth rates were in the range <0.01-2.1 d−1. In the Latitud-II cruise, Prochlorococcus ranged between <103 and >3 × 105 cells ml−1, Synechococcus between <100 and >1.0 × 104 cells ml−1, and picoeukaryotes between <100 and >104 cells ml−1.Two empirical models were used to learn more about the relationship between heterotrophic bacteria and nanoflagellates. Most bacterial production was ingested when this production was low, the heterotrophic nanoflagellates could be controlled by preys during Latitud-I cruise at the DCM, and by predators in the surface and in the Latitud-II cruise. Our results were placed in context with others about the structure and function of auto- and heterotrophic picoplankton and heterotrophic nanoplankton in the Central Atlantic Ocean.  相似文献   

11.
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananéia–Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l−1 and 20.0 μM, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 μg C l−1 h−1) during the dry season. Primary production rates (PP) positively correlated with salinity and euphotic depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 μg C l−1 and 7.9 μg C l−1 h−1, respectively. Despite such a high BP, bacterial abundance remained <2 × 106 cells ml−1, indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d−1. BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs.  相似文献   

12.
We simultaneously followed stable carbon (δ13C) and nitrogen (δ15N) isotopes in a two-source food web model to determine trophic levels and the relative importance of open water- and ice-associated food sources (phytoplankton vs. ice algae) in the lower marine food web in the European Arctic during four seasons. The model is based upon extensive seasonal data from 1995 to 2001.Phytoplankton, represented by samples of particulate organic matter from open water (Pelagic-POM) and ice algae, represented by samples from the underside of the ice (Ice-POM), were isotopically different. Ice-POM was generally dominated by the typical ice diatoms Nitzschia frigida and Melosira arctica and was more enriched than Pelagic-POM in 13C (δ13C = −20‰ vs. −24‰), but less enriched in 15N (δ15N = 1.8‰ vs. 4.0‰). However, when dominated by pelagic algae, Ice-POM was enriched in 13C and 15N similarly to Pelagic-POM.The derived trophic enrichment factors for δ15N (ΔN = 3.4‰) and δ13C (ΔC = 0.6‰) were similar in both pelagic and sympagic (ice-associated) systems, although the ΔC for the sympagic system was variable.Trophic level (TL) range for zooplankton (TL = 1.8-3.8) was similar to that of ice fauna (TL = 1.9-3.7), but ice amphipods were generally less enriched in δ15N than zooplankton, reflecting lower δ15N in Ice-POM compared to Pelagic-POM. For bulk zooplankton, TLs and carbon sources changed little seasonally, but the proportion of herbivores was higher during May-September than in October and March. Overall, we found that the primary carbon source for zooplankton was Pelagic-POM (mean 74%), but depending on species, season and TL, substantial carbon (up to 50%) was supplied from the sympagic system. For bulk ice fauna, no major changes were found in TLs or carbon sources from summer to autumn. The primary carbon source for ice fauna was Ice-POM (mean 67%), although ice fauna with TL > 3 (adult Onisimus nanseni and juvenile polar cod) primarily utilized a pelagic food source.  相似文献   

13.
More than half of the surface sediments covering the continental shelves are sandy, which may permit substantial sub-seafloor pore water advection. Knowledge of sediment permeability is required for quantifying advection and associated solute transport, but studies of marine sediments typically report grain size analyses rather than permeability. Here data from 23 studies were examined to determine the range in permeabilities reported for sublittoral marine sands and to assess the utility of permeability–grain size relationships in this setting. In the resulting database, the permeability of small (∼30 cm) undisturbed cores collected from the sea floor all fell between 2 × 10−12 and 4 × 10−10 m2, a range where advective transport induced by wave and current action should be pervasive. The range in grain size was very similar for near-shore (<10 m water depth) and continental shelf samples (>10 m water depth), but the permeability of the continental shelf samples was consistently lower for the same median grain size. Empirical permeability–grain size relationships generated a poor fit (r2 = 0.35) for the aggregate data, but separate relationships for near-shore and continental shelf samples were significantly better, r2 = 0.66 and 0.77, respectively. Permeability–grain size relationships thus may be useful for sublittoral sands, but a larger database needs to be accumulated before reliable fit parameters and variability can be predicted. Thus it is recommended that permeability be routinely determined when characterizing sedimentological properties of marine sand deposits. Concurrent determinations of sediment bulk density and porosity may further improve estimates of permeability.  相似文献   

14.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

15.
We studied the microbial food web in the upper 100 m of the water column in iron-limited sub-Antarctic HNLC waters south-east of New Zealand in the SAGE experiment in 2004, with focus on bacterioplankton. Samples were collected daily from inside and outside the iron enriched patch. Short term enrichment experiments were conducted on board in 4 L polycarbonate bottles with water outside the iron enriched patch to study single and combined effects of micronutrient additions on microbial food web. Low bacterial growth was recorded in the study area with community turnover times of 50 h or more during the study period. Measurements of bacterial standing stocks and production rates in the study show minor responses to the large scale iron enrichment, with increase in rates and stocks after the first enrichment and at the end of the study period after the third iron enrichment when solar radiation increased and wind mixing decreased. The average daily bacterial production rates were 31.5 and 33.7 mgCm−2 d−1 for the OUT and IN stations, respectively; thus overall there was not a significant difference between the control and the iron-enriched patch. In the bottle experiments bacterial thymidine incorporation showed responses to single iron and silicic acid enrichments and a major growth response to the combined iron and sucrose enrichments. Phytoplankton chlorophyll-a showed clear stimulation by single additions of iron and silicic acid and silicic acid enhanced the iron impact. Cobalt additions had no effect on bacteria growth and a negative effect on phytoplankton growth. Low bacterial in situ growth rates and the enrichment experiments suggest that bacteria are co-limited by iron and carbon, and that bacterial iron uptake is dependent on carbon supply by the food web. With the high iron quota (??mol Fe mol C−1) bacteria may scavenge considerable amounts of the excess iron, and thus influence the relative importance of the microbial food web as a carbon sink.  相似文献   

16.
The structure and the trophic interactions of the planktonic food web were investigated during summer 2004 in a coastal lagoon of south-western Mediterranean Sea. Biomasses of planktonic components as well as bacterial and phytoplankton production and grazing by microzooplankton were quantified at four stations (MA, MB, MJ and R) inside the lagoon. Station MA was impacted by urban discharge, station MB was influenced by industrial activity, station MJ was located in a shellfish farming sector, while station R represented the lagoon central area. Biomasses and production rates of bacteria (7–33 mg C m−3; 17.5–35 mg C m−3 d−1) and phytoplankton (80–299 mg C m−3; 34–210 mg C m−3 d−1) showed high values at station MJ, where substantial concentrations of nutrients (NO3 and Si(OH)4) were found. Microphytoplankton, which dominated the total algal biomass and production (>82%), were characterized by the proliferation of several chain-forming diatoms. Microzooplankton was mainly composed of dinoflagellates (Torodinium, Protoperidinium and Dinophysis) and aloricate (Lohmaniellea and Strombidium) and tintinnid (Tintinnopsis, Tintinnus, Favella and Eutintinnus) ciliates. Higher biomass of these protozoa (359 mg C m−3) was observed at station MB, where large tintinnids were encountered. Mesozooplankton mainly represented by Calanoida (Acartia, Temora, Calanus, Eucalanus, Paracalanus and Centropages) and Cyclopoida (Oithona) copepods, exhibited higher and lower biomasses at stations MA/MJ and MB, respectively. Bacterivory represented only 35% of bacterial production at stations MB and R, but higher fractions (65–70%) were observed at stations MA and MJ. Small heterotrophic flagellates and aloricate ciliates seemed to be the main controllers of bacteria. Pico- and nanophytoplankton represented a significant alternative carbon pool for micrograzers, which grazing represented 67–90% of pico- and nano-algal production in all stations. Microzooplankton has, however, a relatively low impact on microphytoplankton, as ≤45% of microalgal production was consumed in all stations. This implies that an important fraction of diatom production would be channelled by herbivorous meso-grazers to higher consumers at stations MA and MJ where copepods were numerous. Most of the microalgal production would, however, sink particularly at station MB where copepods were scare. These different trophic interactions suggest different food web structures between stations. A multivorous food web seemed to prevail in stations MJ and MA, whereas microbial web was dominant in the other stations.  相似文献   

17.
Eurytemora americana has been only reported as invader in Bahía Blanca Estuary, Argentina within the South Hemisphere. There are a few experimental researches under laboratory conditions done with this species and its reproductive behaviour around the world is very scarce. Consequently, it is still not possible to completely understand its population dynamics. In the present study, E. americana reproductive temporal behaviour and relationships among abundance, female size, egg production and hatching success were examined in the Bahía Blanca Estuary, during 2007 pulse. In order to determine the potential relationships between these variables and the environmental variables, experimental incubations were conducted in the laboratory simulating natural conditions. Spearman’s rank correlation was used to analyze the relationships among all variables. Temporal change of biotic and environmental variables was corroborated by a Mann–Whitney/Kruskal–Wallis non-parametric tests, with significant differences (p ? 0.01) in all variables throughout the study. Abundance population results showed very high values in relation to those recorded in recent years in Bahía Blanca Estuary. This response could be due to the unusual combination of environmental factors (polar wave with temperatures ≤6 °C and a drought period with high salinities, 32.7–36.6) recorded during the studied winter period. Significant positive correlations between abundance and salinity (p < 0.01, n = 226), and hatching success (p < 0.01, n = 25) as well as a significant negative correlation between abundance and chlorophyll a (p < 0.01, n = 226) were found. Although E. americana shows a k-strategy within its annual pulse, it presented two markedly distinct behaviours depending on temporal environmental variability. From July to early september, when the estuary evidenced high salinity, low temperature and high food availability, E. Americana showed large females, large clutch size and high hatching success. When environmental conditions became unfavorable from September to October, small females, small clutch size and very low hatching success were observed. The latter is associated with diapause egg laying which ensures population recruitment. According to our findings the particular combination of low temperatures, high salinities and high available food (i.e. variables which each year modulate its pulse) during 2007 winter–spring, favored the great development of E. americana. This invading species in its opportunistic role has managed to exploit a vacant niche in the estuary, developing two different behaviours within the k-strategy depending on change in environmental conditions.  相似文献   

18.
Based on field experiments and analysis, the study examined the spectral characteristic and spatial variability of turbidity in the Pearl River Estuary by using the EO-1 ALI satellite imagery collected on December 18, 2005. A negative regression model (turbidity = −439.52 × R (570) + 22.913, R2 = 0.9042, n = 11) between the in-situ turbidity and the reflectance at 570 nm (maximum correlation spectral band between 350 and 2500 nm), resulting from increasing of organic matters in suspended solids, was built and applied to ALI band 4 (0.525–0.605 nm). Simple in-water spectral pairs calibration method of bright and dark targets provided the good atmospheric correction of ALI with a root mean square error of 0.00061, and mean absolute percentage error of 2.04%. The study also found the seawater turbidity is a more accurate indicator of Chl_a concentration (R2 = 0.7442) than TSS (R2 = 0.7061). Also, there is a large correlation between TSS and the turbidity (R2 = 0.86, N = 22) for Modaomen watercourse. The model-deduced turbidity distribution from ALI band 4 exhibited distinctive spatial variability of turbidity in the dry season, accordant with seasonal in-situ investigation. The ALI data provides accurate estimates of the mean water clarity conditions in the PRE (RMSE = 1.878 and MAPE = 11.7%) and has potential importance for water quality monitoring of optical remote sensing in the similar estuaries and its future operation.  相似文献   

19.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

20.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号