首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Sections of dissolved inorganic anthropogenic carbon () based on 2002 data in the East Greenland Current (EGC) are presented. The has been estimated using a model based on optimum multiparameter analysis with predefined source water types. Values of have been assigned to the source water types through age estimations based on the transit time distribution (TTD) technique. The validity of this approach is discussed and compared to other methods. The results indicated that the EGC had rather high levels of in the whole water column, and the anthropogenic signal of the different source areas were detected along the southward transit. We estimated an annual transport of with the Denmark Strait overflow (σθ > 27.8 kg m−3) of ∼0.036 ± 0.005 Gt C y−1. The mean concentration in this density range was ∼30 μmol kg−1. The main contribution was from Atlantic derived waters, the Polar Intermediate Water and the Greenland Sea Arctic Intermediate Water.  相似文献   

10.
Several methods to compute the anthropogenic component of total dissolved inorganic carbon () in the ocean have been reported, all in some way deducing (a) the effect by the natural processes, and (b) the background concentration in the pre-industrial scenario. In this work we present a method of calculating using nutrient and CFC data, which takes advantage of the linear relationships found between nitrate (N), phosphate (P) and CFC-11 in the Nordic Seas sub-surface waters. The basis of the method is that older water has lower CFC-11 concentration and also has been exposed to more sinking organic matter that has decayed, resulting in the slopes of P versus CFC-11 and N versus CFC-11 being close to the classic Redfield ratio of 1:16. Combining this with the slope in total alkalinity (AT) versus CFC-11 to correct for the dissolution of metal carbonates gives us the possibility to deduce the concentration of anthropogenic CT in the Nordic Seas. This further allowed us to compute the inventory of anthropogenic CT below 250 m in the Nordic Seas in spring 2002, to ∼1.2 Gt C.  相似文献   

11.
12.
在频域中分别使用Rankine面元法和去奇点Rankine面元法(desingularized-Rankine panel method,简称DRPM)快速求解有航速船舶耐波性问题。使用两种不同的线性化方式:叠模流线性化法(double-body flow,简称DB)和均匀流线性化方法(Neumann-Kelvin,简称NK)计算了Wigley I、Wigley III和S175在有航速时船舶的水动力系数、波浪激励力和运动响应。两种线性化方法的计算结果与试验结果进行了比较,研究表明:使用Rankine面元法和去奇点Rankine面元法计算的结果相差不大,且与NK法相比使用DB法计算的结果和试验值更吻合,尤其是非对角线上交叉耦合水动力系数A35,B35,A53,B53的计算结果。运动响应对于边界条件线性化方式比较敏感,尤其是垂荡运动,在船共振频率附近,运动受到的影响最明显。  相似文献   

13.
14.
15.
Sand transport in Lido and Chioggia inlets was measured using modified Helley–Smith sand traps equipped with 60-micron nets. The traps had an efficiency of about 4% only but provided enough material for analysis. Very fine sand (0.07 < d < 0.11 mm) only was collected in the traps. Transport of sand was greatest in the bottom 10% of the water column and followed a Rouse profile. Sand extended to a height of about 4 m above the bed during peak flows corresponding to the estimated thickness of the boundary layer; and observed in synoptic ADCP profiles. The sand in the benthic boundary layer was largely inorganic (>95%); above this layer, organic content varied widely and was greatest near the surface. The movability number Ws/UWs/U showed a linear relationship to dimensionless grain diameter (D*): (Ws/U)=(D/10)(Ws/U)=(D/10); D* < 10. Sand concentration in suspension was simulated by a mean Rouse parameter of −2.01 ± 0.66 (Lido inlet) and −0.82 ± 0.27 (Chioggia inlet). The β parameter ( Hill et al., 1988) was correlated with D* and movability number in the form: β=2.07−2.03D+59(Ws/U)2β=2.072.03D+59(Ws/U)2 (r2 = 0.42). Von Karman's constant was back-calculated from a Law of the Wall relationship as a test on the accuracy of U* estimates; a mean value of 0.37 ± 0.1 (compared to the accepted value of 0.41) suggest U* was accurate to within 10%. The constant of proportionality (γ = 3.54 × 10−4) between reference concentration (Ca) and normalized excess bed shear stress was in line with the published literature.  相似文献   

16.
Harper L. Simmons   《Ocean Modelling》2008,21(3-4):126-138
A realistic-geometry global baroclinic tidal model forced with a single tidal constituent (M2) is used to investigate the generation of the internal tide and the associated radiated baroclinic energy flux. The model internal wave spectrum is populated at discrete frequency multiples (1/2,1,3/2,2,5/2,) of M2. The 1/2M2 subharmonic is particularly energetic at its turning latitude of ±28.8°. Poleward only integer superharmonics of M2 are significantly excited. The subharmonic turning latitude (SHTL) disturbance has high vertical wavenumber and shear, provided that internal tide energy level exceeds a threshold value. Under these circumstances, Richardson numbers smaller than 1/4 occur in the upper few hundred meters in both the realistic-geometry model and in a complimentary idealized geometry two-dimensional (2D) model. In the 2D model, the disturbance enables Richardson number dependent diapycnal entrainment to effect a modification of the stratification of the upper 400 m of the ocean, and poleward cross-SHTL energy flux falls to 10% of its pre-instability value due to energy transfer to the non-propagating (i.e., inertial) subharmonic. Realistic-geometry simulations suggest a more modest 40% decrease in net flux, although the strongest beams are almost entirely shut down. The predicted energy flux-convergence implies a thermocline dissipation rate in the 28.5–30.0°N latitude band of 5×10-9Wkg-1, with an associated diapycnal diffusivity of 10-4m2s-1. North of Hawaii the implied regional dissipation rate reaches 4×10-8Wkg-1 with an associated thermocline diffusivity of 8×10-4m2s-1. Investigations of subgridscale parameterization and resolution sensitivity suggest that the basic character and magnitude of the predictions are robust to details of the numerical solutions. The present results are taken as further evidence that an increase in shear-driven turbulent mixing in the upper ocean is predicted at special latitudes. It is suggested that the search should be directed to regions where intense low-mode internal tide beams cross their subharmonic turning latitude.  相似文献   

17.
In the seasonally stratified Gulf of Aqaba Red Sea, both release by phytoplankton and oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, formation was strongly correlated (R2 = 0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete reduction by light limited phytoplankton was a major source of . However, as stratification progressed, continued to be generated below the euphotic depth by microbial oxidation, likely due to differential photoinhibition of and oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined and pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from −5‰ to up to +20‰.N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of , , and urea was more rapid in the light (434 ± 24, 94 ± 17, and 1194 ± 48 nmol N L−1 day−1 respectively) than in the dark (58 ± 14, 29 ± 14, and 476 ± 31 nmol N L−1 day−1 respectively). Dark assimilation was 314 ± 31 nmol N L−1 day−1, while light assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 h from spike addition. The overall rate of coupled urea mineralization and oxidation (14.1 ± 7.6 nmol N L−1 day−1) was similar to that of oxidation alone (16.4 ± 8.1 nmol N L−1 day−1), suggesting that mineralization of labile dissolved organic N compounds like urea was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.  相似文献   

18.
Turbulent heat transfer in a swinging tube with a serrated twist tape insert was experimentally examined to reveal the effects of swinging oscillations on heat transfer for such a swirl tube under sea-going conditions. This swirl tube swings about two orthogonal axes under single and compound rolling and pitching oscillations. A selection of Nusselt number (Nu) measurements illustrates the influences of swinging oscillations with and without buoyancy interaction on heat transfer performances. Single rolling or pitching oscillation with the swinging frequencies ranging from 0.333 to 1 Hz reduces heat transfer levels from the static references. Synergistic effects of compound rolling and pitching oscillations with either harmonic or non-harmonic rhythms improve heat transfer performances. Buoyancy effects in the swinging swirl tube elevate local Nu, but are weakened as the relative strength of swinging force increases. A set of heat transfer correlations is derived that permits the individual and interactive effects of single and compound swinging force effects with buoyancy interactions on the developed flow heat transfer value () to be quantified.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号