首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

2.
J.L. Whitford-Stark 《Icarus》1981,48(3):393-427
Nectaris is an 820-km-diameter, multiring impact basin located on the near side of the Moon. The transient cavity is estimated to have been less than 90 km in depth and materials were excavated from a depth of less than 30 km. About 2 km thickness of impact melt is believed to line the cavity center. The impact event probably took place at about 3.98 ± 0.03 × 109 years ago. Nectaris ejecta forms a substantial proportion of the surface materials at the Apollo 16 site. Inter-ring plains deposits were deposited after the formation of the Nectaris basin. The most persuasive origin for the smooth plains is one of extrusives overlain by a thin veneer of ejecta. Basaltic fragments within Apollo 16 samples are believed to have been largely derived from Nectaris. A titanium-rich Apollo 16 mare basalt fragment has an age of 3.79 ± 0.05 × 109 years but, although some relatively titanium-enriched basalts occur in southern Nectaris, titanium-rich basalts are nowhere seen at the surface of the mare. The earliest recognized eruptives appear to be low-titanium (perhaps VLT) basalts found as pyroclastic materials on Daguerre and in the Gaudibert region. The majority of the surface basalts are of intermediate composition (possibly similar to Apollo 12 basalts) and have an age of approximately 3.6 × 109 years. The basalt fill is estimated to have a minimum thickness of 3 km. Flood-style eruptions appear to have been the main form of extrusion. Mare ridges exhibit a strong north-south preferential alignment and appear to postdate basalt emplacement. The lack of basin-related graben in Nectaris is consistent with a thick lithosphere. The basin ring structure is best preserved in the southwest and least preserved in the northeast. This is believed to result from horizontal variations in the crust and lithosphere thicknesses and from the influence of the preexisting Fecunditatis and Tranquillitatis basins; the ring structure is best preserved where the lithosphere was thickest. Floor-fractured craters within Nectaris are intimately associated with the basalt fill both in terms of age and location. Theophilus ejecta, small craters, and Tycho rays, combined with subsidence and mare ridge development, were the only modifying influences on Nectaris since the termination of basalt eruptions.  相似文献   

3.
Abstract— Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low‐Ti basalts and evolved toward medium‐ and high‐Ti basalts. Some of the high‐Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low‐ and medium‐Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high‐Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high‐Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium‐ to high‐Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.  相似文献   

4.
Clast 100 in regolith breccia 15295 could be a key to resolving the relationship(s) between mare basalts and lunar picritic glasses. The clast is basaltic, with texture, mineralogy, mineral compositions, and calculated bulk composition suggesting that it crystallized in a thick lava flow or shallow intrusive body from a very‐low‐titanium (VLT) basaltic magma. The estimated bulk composition of clast 15295,100 is primitive (i.e., magnesian) compared to those of known VLT basalts, and is very close to those of VLT picritic green glasses, especially the Apollo 14 A green glass. From these similarities, we infer that clast 15295,100 is a crystalline product of a picritic magma similar to the Apollo 14 A glass. Clementine and M3 remotely sensed data of the lunar surface were used to find areas that have chemical compositions consistent with those of clast 15295,100, not only near the Apollo 15 site, but in a broad region surrounding the site. Two regions are consistent with clast's 15295,100 compositional data. The larger region is in southern Mare Imbrium, and a smaller region is in the eastern half of Sinus Aestuum. These locations should be considered as candidates for future missions focusing on sample science.  相似文献   

5.
We have classified 1858 lithic and vitreous fragments from the Luna 16 core-tube sample. They were taken from the soil fractions ranging in size from 150 to 425 μ, at levels A and G (γ). No important differences are observed between the proportions of particle types in levels A and G, nor between the soils of Luna 16 and those from the Apollo 11 landing site in the nearby Mare Tranquillitatis. Luna 16 basalts are texturally and mineralogically similar to Apollo 11 basalts, though the former are characterized by more Fe-rich olivines and pyroxenes and by lower ilmenite contents than are Apollo 11 basalts. The atomic ratio Al/Ti in Luna 16 basalt pyroxenes in about 1.5; Apollo 11 basalt pyroxenes have Al/Ti = 2.0, indicating the possibility of a lower mean valence for Ti in the Luna 16 material than in the Apollo 11 material. Most light-colored lithic fragments are anorthositic rather than noritic in character and are comparable to Apollo 11 anorthosites in mineral chemistry. We believe they are samples of terra regions to the north of the Luna 16 landing site. Triangular diagrams plotting normative plagioclase, normative mafics plus oxides, and normative orthoclase plus apatite neatly separate the three major types of lunar materials — mare basalts, anorthosites, and noritic rocks — and reveal that the Luna 16 regolith is composed of mare basalt and anorthosite, with very little norite component. Colorless-to-greenish glass occurs in the Luna 16 sample, which has high Fe and low Ti; it may represent gabbroic rock related to the anorthosites  相似文献   

6.
Abstract— Eighteen new lithic fragments from the Soviet Luna missions have been analyzed with electron microprobe and 40Ar‐39Ar methods. Luna 16 basalt fragments have aluminous compositions consistent with previous analyses, but have two distinct sets of well‐constrained ages (3347 ± 24 Ma, 3421 ± 30 Ma). These data, combined with other Luna 16 basalt ages, imply that there were multiple volcanic events filling Mare Fecunditatis. The returned basalt fragments have relatively old cosmicray exposure (CRE) ages and may have been recovered from the ejecta blanket of a young (1 Ga), nearby crater. A suite of highlands rocks (troctolites and gabbros) is represented in the new Luna 20 fragments. One fragment is the most compositionally primitive (Mg# = 91–92) spinel troctolite yet found. Both troctolites have apparent crystallization ages of 4.19 Ga; other rocks in the suite have progressively younger ages and lower Mg#s. The age and composition progression suggests that these rocks may have crystallized from a single source magma, or from similar sources mobilized at the same time. Within the new Luna 24 basalt fragments is a quench‐textured olivine vitrophyre with the most primitive composition yet analyzed for a Luna 24 basalt, and several much more evolved olivine‐bearing basalts. Both new and previously studied Luna 24 very low‐Ti (VLT) basalt fragments have a unimodal age distribution (3273 ± 83 Ma), indicating that most returned samples come from a single extrusive episode within Mare Crisium much later than the Apollo 17 VLT basalts (3.6–3.7 Ga).  相似文献   

7.
Abstract– Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA‐ICP‐MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very‐low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light‐REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu‐anomalies and such low‐ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin‐forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer‐Feldspathic Highlands Terrane (FHT‐O), probably on the lunar farside and within about 1000 km of sources of both Low‐Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.  相似文献   

8.
New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low‐Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe‐rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high‐Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study.  相似文献   

9.
In the context of sample evidence alone, the high-alumina (HA) basalts appear to be an unique, and rare variety of mare basalt. In addition to their distinct chemistry, radiometric dating reveals these basalts to be among the oldest sampled mare basalts. Yet, HA basalts were sampled by four missions spanning a lateral range of ∼2400 km, with ages demonstrating that aluminous volcanism lasted at least 1 billion years. This evidence suggests that HA basalts may be a widespread phenomenon on the Moon. Knowing the distribution of HA mare basalts on the lunar surface has significance for models of the origin and the evolution of the Lunar Magma Ocean. Surface exposures of HA basalts can be detected with compositional remote sensing data from Lunar Prospector Gamma Ray Spectrometer and Clementine. We searched the lunar surface for regions of interest (ROIs) that correspond to the intersection of three compositional constraints taken from values of sampled HA basalts: 12-18 wt% FeO, 1.5-5 wt% TiO2, and 0-4 ppm Th. We then determined the “true” (unobscured by regolith) composition of basalt units by analyzing the rims and proximal ejecta of small impacts (0.4-4 km in diameter) into the mare surface of these ROIs. This paper focuses on two ROIs that are the best candidates for sources of sampled HA basalts: Mare Fecunditatis, the landing site of Luna 16; and northern Mare Imbrium, hypothesized origin of the Apollo 14 HA basalts. We demonstrate our technique's ability for delineating discrete basalt units and determining which is the best compositional match to the HA basalts sampled by each mission. We identified two units in Mare Fecunditatis that spectrally resemble HA basalts, although only one unit (Iltm) is consistent with the compositional and relative age of the Luna 16 HA samples. Northern Mare Imbrium also reveals two units that are within the compositional constraints of HA basalts, with one (Iltm) best matching the composition of the basalts sampled by Apollo 14.  相似文献   

10.
Abstract— Queen Alexandra Range (QUE) 94281, a lunar meteorite recently discovered in Antarctica, is a glassy-matrix, clast-rich regolith breccia containing a mixture of mafic, volcanic-glass and gabbroic constituents and a diverse set of highland constituents. In thin section, the clast assemblage is dominated by coarse mineral debris from a shallow intrusive or hypabyssal setting, or from deep within a thick mare flow. Abundant coarse-grained pyroxene clasts have fine-scale exsolution lamellae and compositions similar to pyroxenes of known lunar very-low-Ti (VLT) basalts and other lunar meteorites of basaltic composition. Pyroxene compositions follow Fe-enrichment extending to hedenbergite, which is associated with fayalite and cristobalite, indicating slow cooling. We refer to the protolith of the crystalline VLT component as VLT gabbro. Fragments of pyroclastic glasses that have high Fe and low Ti concentrations, similar to the pyroclastic green glasses known from Apollo samples, are common. Lithic clasts include abundant subrounded, glassy to cryptocrystalline, aluminous (~17–30 wt% Al2O3) KREEP-poor melt breccias of highland origin and a variety of other feldspathic impactites. On the basis of composition of our subsamples, QUE 94281 consists of ~54 wt% mafic or “mare” components and 46 wt% feldspathic or “highland” components. The bulk composition of QUE 94281 is similar to that of Yamato (Y) 793274, but QUE 94281 has slightly greater concentrations of some siderophile elements and slightly lower concentrations of those elements contributed mainly by mafic constituents. Differences in siderophile element concentrations are consistent with longer surface exposure of QUE 94281. Minor differences in trace element variations of subsamples of the two meteorites suggest subtle differences in the composition of their highland constituents. Nonetheless, the overall similarity of compositions supports the possibility that they were ejected from the same source region on the Moon. The crystalline VLT component of QUE 94281 differs from those known from Apollo 17 and Luna 24 VLT lithologies and from that of basaltic breccia Elephant Moraine (EET) 87521. The VLT-gabbro component and the ferroan VLT volcanic glasses in QUE 94281 have compositions that may be petrogenetically related by derivation from a common picritic parent composition, represented by an ultramafic glass found in QUE 94281.  相似文献   

11.
Abstract— –Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact‐melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti‐poor to Ti‐rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm‐Al2O3, FeO‐Cr2O3‐TiO2, Sm/Eu and Th‐K2O. The composition can best be modeled as a mixture of high‐K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace‐element (ITE)‐ rich high‐K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high‐Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.  相似文献   

12.
Miller Range (MIL) 13317 is a heterogeneous basalt‐bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near‐surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al2O3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare‐highland boundary that is KREEP‐rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low‐Ti to low‐Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon‐bearing phases and Ca‐phosphate grains in basalt clasts and matrix grains yield 207Pb/206Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207Pb/206Pb ages indicate that the meteorite has sampled a range of Pre‐Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.  相似文献   

13.
Abstract– The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magma’s estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral‐melt Ti distribution coefficient. Overall, most of the basalt fragments are low‐Ti basalts (1–6% TiO2), with a significant proportion of very‐low‐Ti basalts (<1% TiO2). Only a few basalt clasts were high‐Ti or intermediate Ti types (>10% TiO2 and 6–10% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV‐Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high‐Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moon’s oldest volcanism.  相似文献   

14.
Abstract– Fourteen major basaltic units in Mare Serenitatis have been identified and mapped from differences in TiO2 wt%. The ages of these units have been inferred from their crater densities and reference to isotopically dated Apollo samples. It has been found that FeO and TiO2 wt% of the units do not show any apparent trend with time. However, the oldest units have much greater variation in FeO and TiO2 wt% than younger ones. No lateral trend in the age of the basaltic units is apparent within the basin. A vertical profile of Mare Serenitatis has been produced based on the depth of basalt within impact craters. The minimum depth of basalt has been estimated where craters have not exposed underlying highland material. The profile has been used to estimate the minimum volume of basalt within the basin to be ≈500,000 km3.  相似文献   

15.
Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA‐ICP‐MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#<70), have high Sc/Sm ratios (typically >10), and have low incompatible trace element (ITE) concentrations (i.e., typically <3.2 ppm Sm, <1.5 ppm Th). Feldspathic impact melt in DaG 400, PCA 02007, and MAC 88104/05 are similar in composition to that estimated composition for upper feldspathic lunar crust ( Korotev et al. 2003 ). However, these melt types are more mafic (i.e., less Eu, less Sr, more Sc) than feldspathic impact melts returned by the Apollo 16 mission (e.g., the group 3 and 4 varieties). Mafic impact melt clasts are common in MET 01210 and less common in PCA 02007 and MAC 88104/05. We show that unlike the Apollo mafic impact melt groups ( Jolliff 1998 ), these meteorite impact melts were not formed from melting large amounts of KREEP‐rich (typically >10 ppm Sm), High Magnesium Suite (typically >70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios <2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP‐poor and Sc‐rich, and represent mixing between feldspathic lithologies and low‐Ti or very low‐Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer‐Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low‐Ti basalt contribution.  相似文献   

16.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

17.
Abstract— We studied crystallization trends of pyroxene and spinel in four Antarctic meteorites known to be derived from mare regions of the Moon: Y-793169 and A-881757 (YA meteorites) are unbrecciated igneous basalts, EET 87521 is a fragmental breccia, and Y-793274 is a regolith breccia. All have relatively low bulkrock TiO2 content, and the YA meteorites are uncommonly ancient. Our electron probe microanalysis (EPMA) data indicate that the YA meteorites and the dominant mare components of Y-793274 and EET 87521 conform to a general trend for Ti-poor (low-Ti and very low-Ti) mare basalts. Their pyroxenes show a strong correlation between Fe/(Fe + Mg) (Fe#) and Ti/(Ti + Cr) (Ti#), both ratios typically increasing from core to rim. These trends presumably reflect local crystallization differentiation of interstitial melt. Previous studies (M. J. Drake and coworkers) have suggested that the detailed configurations of such Fe# vs. Ti# trends may reflect the bulk TiO2 contents of the parent magmas (basalts). As a more systematic approach to this problem, we plot bulk-rock TiO2 as a function of the Fe# = 0.50 intercept of each rock's pyroxene Fe# vs. Ti# trend. We call this intercept the Fe#-normalized Ti#. Based on our data for EET 87521, the YA meteorites, and Apollo 12 basalts 12031 and 12064, plus literature data for several other Ti-poor mare basalts, we find a strong correlation between Fe#-normalized Ti# and the bulk TiO2 content of the parent basalt. This correlation confirms that fragmental breccia EET 87521 is nearly pure very low-Ti (VLT) basalt and that the YA meteorites, for which bulk-rock TiO2 results scatter due to unusually coarse grain size (A-881757) or scarcity of available sample (Y-793169), are pieces of an uncommonly Ti-poor, but not quite VLT, variety of low-Ti mare basalt. Extrapolating from this correlation, the dominant mare component of regolith breccia Y-793274 is probably of VLT affinity. Besides the normal mare pyroxene trend of strong correlation between Fe# and Ti#, Y-793274 includes two additional pyroxene compositional trends, both showing a wide range of Ti# despite relatively constant (and low, by mare standards) Fe#. The most magnesian of these trends consists of a single clast with a mode of orthopyroxene + MgO-rich ilmenite. These two trends are of uncertain origin. Possibly one or both represents the highland component of this regolith breccia, although, unlike most highland pyroxenes, these appear relatively unaltered by impact brecciation and metamorphism. Compositions of spinels in the coarse-grained A-881757 show an extraordinary distribution: chromite and ulvöspinel components vary among grains but are nearly constant within grains. Despite its old age and unusually coarse grain sizes, mineralogical evidence (i.e., heterogeneity within both pyroxene and spinel; typical pyroxene exsolution scale very coarse by mare standards but exceeded by the pyroxenes of EET 87521 and Y-793274) indicates that A-881757 was cooled only slightly more slowly than typical mare basalts and may have formed near the center of an uncommonly thick lava flow. Both of the VLT basaltic lunar meteorite breccias, EET 87521 and Y-793274, are composed dominantly of pyroxenes with exsolution coarser than normal for mare basalts. Possibly VLT basalt flows tend to be systematically thicker, and thus more slowly cooled, than more Ti-rich flows.  相似文献   

18.
Abstract— We report on the bulk composition and petrography of four new basaltic meteorites found in Antarctica—LAP (LaPaz Icefield) 02205, LAP 02224, LAP 02226, and LAP 02436—and compare the LAP meteorites to other lunar mare basalts. The LAP meteorites are coarse‐grained (up to 1.5 mm), subophitic low‐Ti basalts composed predominantly of pyroxene and plagioclase, with minor amounts of olivine, ilmenite, and a groundmass dominated by fayalite and cristobalite. All of our observations and results support the hypothesis that the LAP stones are mutually paired with each other. In detail, the geochemistry of LAP is unlike those of any previously studied lunar basalt except lunar meteorite NWA (Northwest Africa) 032. The similarities between LAP and NWA 032 are so strong that the two meteorites are almost certainly source crater paired and could be two different samples of a single basalt flow. Petrogenetic modeling suggests that the parent melt of LAP (and NWA 032) is generally similar to Apollo 15 low‐Ti, yellow picritic glass beads, and that the source region for LAP comes from a similar region of the lunar mantle as previously analyzed lunar basalts.  相似文献   

19.
Northwest Africa (NWA) 7611/10480 are lunar regolith breccia meteorites, composed of mineral fragments and various clasts including mare basalts, volcanic glasses, gabbroic lithologies, and a diverse variety of highland materials (ferroan anorthosite, Mg-suite, magnesian anorthosite, and alkali suite rocks) as well as different subvarieties of impact melt breccia. The Apollo two-component mixing model calculation reveals that the NWA 7611 source region contains 58 wt% mare materials and 42 wt% highland components, but the estimated mare components in NWA 10480 have a higher abundance (66 wt%). The predominantly very low-Ti (VLT) composition in both fine-grained basaltic and coarse-grained gabbroic lithologies indicates a provenance associated with a thick lava flow or a single magmatic system. The co-occurrence of zoning patterns and fine-scale exsolution lamellae in pyroxene debris supports a cryptomare deposit as the best candidate source. Phosphate Pb–Pb ages in matrix fragments, impact melt breccia, and basaltic clast indicate that the breccia NWA 7611 records geological events spanning approximately 4305–3769 Ma, which is consistent with the ages of ancient lunar VLT volcanism and the products of basin-forming impacts on the lunar nearside. The youngest reset age at ~3.2 Ga is potentially related to the strong shock lithification process of breccia NWA 7611. Moreover, the similar petrology, texture, geochemistry, cosmic-ray exposure data, and crystallization ages support that basaltic component in Yamato (Y)-793274, and Queen Alexandra Range (QUE) 94281, NWA 4884, and NWA 7611 clan came from the same basalt flow.  相似文献   

20.
Abstract The major‐ and minor‐element abundances were determined by electron microprobe in 1039 glasses from regoliths and regolith breccias to define the compositional topology of lunar glasses at the Apollo 16 landing site in the central highlands of the Moon. While impact glasses with chemical compositions similar to local materials (i.e., Apollo 16 rocks and regoliths) are abundant, glasses with exotic compositions (i.e., transported from other areas of the Moon) account for up to ?30% of the population. A higher proportion of compositionally exotic, angular glass fragments exists when compared to compositionally exotic glass spherules. Ratios of non‐volatile lithophile elements (i.e., Al, Ti, Mg) have been used to constrain the original source materials of the impact glasses. This approach is immune to the effects of open‐system losses of volatile elements (e.g., Si, Na, K). Four impact glasses from one compositionally exotic group (low‐Mg high‐K Fra Mauro; lmHKFM) were selected for 40Ar/39 Ar dating. The individual fragments of lmHKFM glass all yielded ages of ?3750 ± 50 Ma for the time of the impact event. Based on the petrography of these individual glasses, we conclude that the likely age of the impact event that formed these 4 glasses, as well as the possible time of their ballistic arrival at the Apollo 16 site from a large and distant cratering event (perhaps in the Procellarum KREEP terrain) (Zeigler et al. 2004), is 3730 ± 40 Ma, close to the accepted age for Imbrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号