首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Abstract— A compilation of the chemical analyses of 241 stony and 36 iron meteorites is presented; 196 analyses were published previously, 81 are new. This compilation includes analyses of new falls, new finds, previously analyzed meteorites, previously analyzed meteorites with suspect values, analyses of separates and inclusions, and analyses of 53 stony and 29 iron meteorites from Antarctica, including one of the “lunar” type. Mean compositions of chondrite falls, finds, and Antarctic chondrites are compared. References are listed for earlier published analyses and an appendix provides an outline of the sampling procedures, sample preparation, and the analytical methods.  相似文献   

2.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

3.
In the five years from June, 1967, to June, 1972, a total of 99 meteorites were found in Roosevelt County, New Mexico and in adjoining Curry County. Of this number, 74 were found by one man. The finds include two achondrites, one pallasite, one carbonaceous chondrite, and 95 chondrites. They appear to represent more than 50 separate meteorite falls. The finding of a large number of meteorites in a small area provides data for an estimate of the probable quantity and average size of the meteorite specimens reaching the earth. The problems involved in allocating a total of 17 available local place names among more than 50 meteorite falls are discussed.  相似文献   

4.
Abstract— We report here new analyses of S and Se in carbonaceous chondrites (2 CIs, 11 CMs, 6 CO3s, 7 CV3s, 2 C4s, 4 CRs, and 1 CH), 2 rumurutiites, ordinary chondrites (2 Hs, 2 Ls, and 1 LL), 3 anomalous chondrites, 3 acapulcoites, 3 lodranites, and in silicate inclusions of the Landes IAB iron meteorite. To avoid problems from inhomogeneous distribution of sulfides, the same samples that had been analysed for Se by INAA were analysed for S using a Leybold Heraeus Carbon and Sulfur Analyser (CSA 2002). With the measured CI contents of 5.41% S and 21.4 ppm Se a CI S/Se ratio of 2540 is obtained. A nearly identical S/Se ratio of 2560 ± 150 is found for carbonaceous chondrites (average of falls). The average ratio of all meteorite falls analysed in this study was 2500 ± 270. These data suggest that the new S content of Orgueil with 5.41% provides a reliable estimate for the average Solar System. The new solar system abundance of S of 4.62 × 105 (atoms/106 Si) is in good agreement with the solar photospheric abundance of 7.21 (log (a(H)) = E12) (Anders and Grevesse, 1989). Among the 50 analysed meteorites, 24 were finds from hot (Australia, Africa) and cold (Antarctica) deserts. Weathering effects in the carbonaceous chondrites and in one lodranite from the hot deserts resulted in losses of S, Se, Na and occasionally Ni. Sulfur is apparently more affected by weathering than Se. No losses were observed in ordinary chondrite finds and in meteorites collected in the Antarctica, except for the obvious loss of Na in the CM-chondrite Y 74662. The low S-content of 0.096% in Gibson, a lodranite, is probably not representative of this group of meteorites. Gibson is a find from the Australian desert and has lost S and also Se by weathering. Two other lodranites, finds from Antarctica, have about 2% S.  相似文献   

5.
Identification and characterization of small extraterrestrial samples, such as small Antarctic meteorites <~1 cm, require the development of convenient laboratory‐based nondestructive analytical techniques using X‐ray diffraction (XRD). We explore the characterization criteria using an X‐ray diffractometer with a Gandolfi attachment using sub‐mm small fragments and powder aggregates for various kinds of stony meteorites and develop a new analytical technique. We primarily focus on olivine and pyroxene because they are the most abundant and important minerals for stony meteorite classification. A new calibration is performed to estimate the FeO content of the olivine in unequilibrated ordinary chondrites, which is useful for determining the meteorite chemical group irrespective of powder aggregate diameter but dependent on fragment grain diameter. This is because X‐ray intensity absorption is more effective for grains than for powders. Clinoenstatite (Cen) and orthoenstatite (Oen) were distinguished using the presence or absence of the isolated Oen 511 index peak. The method is also applied to other stony meteorites including carbonaceous chondrites and achondrites. The XRD results are consistent with studies based on polished sections involving textural observations by scanning microscope and chemical compositions of the constituent minerals. The new measurement technique presented here is convenient because of its use in air by the laboratory‐based X‐ray diffractometer, which makes it useful for the initial analyses of restricted extraterrestrial sample characterization.  相似文献   

6.
Hot and cold deserts have been thoroughly searched for meteorites in the past decades, which has led to a large inventory of classified meteorites. H‐ and L‐chondrites are the most abundant meteorites in all collections, and many authors used the H/L ratio as a characteristic parameter in comparing meteorite populations. H/L ratios (after pairing) vary from 0.90 in observed falls up to 1.74 in El Médano (Atacama Desert). In this study, we investigate the H/L ratio of 965 unpaired H‐ and L‐chondrites collected in Oman and compare this population with observed falls and other hot desert collections. We find a mass dependence of the H/L ratio among hot desert finds and identify mechanisms such as fragmentation during weathering and fall that have an impact on the H/L ratio. We employ the Kolmogorov–Smirnov and Mann–Whitney U statistical tests to compare the mass distributions of H‐ and L‐chondrites and to test the relationship between the similarity of mass distributions and the H/L ratio. We conclude that the variations of the H/L ratios observed in various populations are a sampling artifact resulting from secondary effects and observational bias, expressed in differences of the H and L mass distributions which are not observed in falls, and not due to variations in H/L of the meteorite flux. The H/L ratio of 0.90 observed among recent falls is considered as most representative for the overall meteorite flux, at least since the Late Pleistocene.  相似文献   

7.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   

8.
We describe the geological, morphological, and climatic settings of two new meteorite collections from Atacama (Chile). The “El Médano collection” was recovered by systematic on‐foot search in El Médano and Caleta el Cobre dense collection areas and is composed of 213 meteorites before pairing, 142 after pairing. The “private collection” has been recovered by car by three private hunters and consists of 213 meteorites. Similar to other hot desert finds, and contrary to the falls and Antarctica finds, both collections show an overabundance of H chondrites. A recovery density can be calculated only for the El Médano collection and gives 251 and 168 meteorites larger than 10 g km?2, before and after pairing, respectively. It is by far the densest collection area described in hot deserts. The Atacama Desert is known to have been hyperarid for a long period of time and, based on cosmic‐ray exposure ages on the order of 1–10 Ma, to have been stable over a period of time of several million years. Such a high meteorite concentration might be explained invoking either a yet unclear concentration mechanism (possibly related to downslope creeping) or a previously underestimated meteorite flux in previous studies or an average terrestrial age over 2 Myr. This last hypothesis is supported by the high weathering grade of meteorites and by the common terrestrial fragmentation (with fragments scattered over a few meters) of recovered meteorites.  相似文献   

9.
Low‐temperature specific heat capacities of meteorites provide valuable data for understanding the composition and evolution of meteorites and modeling the thermal behavior of their source asteroids. By liquid nitrogen immersion, we measured average low‐temperature heat capacities for 60 ordinary chondrite falls from the Vatican collection. We further characterized the temperature dependence of ordinary chondrite by direct measurement of Cp(T) over the range 5–320 K for five OC falls, coupled by composition‐based models for 94 ordinary chondrites. We find that the heat capacity as a function of temperature for typical ordinary chondrites can be closely approximated by a third‐order polynomial in temperature. Furthermore, those polynomial coefficients can be estimated from the single‐value average heat capacity measurement. These measurements have important implications for the orbital and spin evolution of S‐ and Q‐type asteroids via the various Yarkovsky effects and the thermal evolution of meteorite parent bodies.  相似文献   

10.
We report on the first meteorite search campaign in the United Arab Emirates (UAE). The geology and proximity of our search region suggest that it is the north‐western extension of the Oman meteorite fields. We found 26 ordinary chondrites, bringing the total number of official meteorites from the UAE to 28. The campaign was organized and conducted in close cooperation with the UAE government and the main masses of the meteorites remained in the country where they will become part of an exhibition. The bulk composition of five meteorite and three soil samples indicates an uptake of U, Mo, Sr, Ba, Li, and Pb from the soil into the meteorites during terrestrial weathering. Terrestrial ages determined from 14C decay of 21 meteorites range from recent falls to 24.4 ka, with two meteorites having >37 ka and approximately 39 ka, respectively. Weak correlations between weathering degree, meteorite bulk chemical composition, and terrestrial age suggest highly localized weathering conditions, possibly related to abundant occurrences of sabkhas in the search region.  相似文献   

11.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

12.
CM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C-complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C-complex asteroids including Bennu.  相似文献   

13.
Abstract— The nature and isotopic composition of carbonaceous components in a variety of ordinary chondrites have been studied using stepped combustion. The samples were chosen to include falls, finds and Antarctic meteorites; specimens from all three chemical groups (H, L and LL) have been analysed. Effort was concentrated mostly on the low petrologic type meteorites (i.e., type 3); however, types 4–6 were also included in the study. Apart from terrestrial contaminants and weathering products, some of the unequilibrated ordinary chondrites appear to contain an indigenous organic component. In addition, most of the samples studied show evidence for an amorphous/graphitic component. This exists as C-rich aggregates or as carbon associated with “Huss” matrix. There does not appear to be any difference in δ13C for this carbon between Antarctic and non-Antarctic meteorites. In contrast, low temperature carbon in Antarctic samples is characterized by a 13C-enrichment. This is thought to be due to the influence of terrestrial weathering products introduced in the Antarctic. Curiously, the low temperature carbon in non-Antarctic finds appears to be intermediate in δ13C between Antarctic finds and non-Antarctic falls. This suggests that the weathering processes which are so obviously apparent from Antarctic samples may also extend, albeit in a more limited way, to non-Antarctic meteorites.  相似文献   

14.
Abstract— CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and β‐alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography‐mass spectrometry (GC‐MS) and high performance liquid chromatography‐fluorescence detection (HPLC‐FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM‐ and CI‐type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.  相似文献   

15.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   

16.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

17.
Abstract— Fifty‐four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10–20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe‐Ni metal alteration, and ii) a second Ba‐and Sr‐dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ?2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large‐scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.  相似文献   

18.
Abstract— This Meteoritical Bulletin is again dominated by meteorite finds from hot and cold deserts: 99 from the Nullarbor, 12 from the Sahara, and 35 from Antarctica. Besides 161 ordinary chondrites, it lists 5 irons (Cotton, Hidden Valley, Miles, Tagounite, Tres Castillos), 2 ureilites (FRO90168, Hughes 009), 1 howardite (ALH 88135), 1 CV3 (Axtell), 1 CK4 (Sleeper Camp 006), and 2 enstatite chondrites (ALH 88070, Forrest 033). Three of the meteorites are falls.  相似文献   

19.
Abstract— A database of magnetic susceptibility measurements of stony achondrites (acapulcoite‐lodranite clan, winonaites, ureilites, angrites, aubrites, brachinites, howardite‐eucrite‐diogenite (HED) clan, and Martian meteorites, except lunar meteorites) is presented and compared to our previous work on chondrites. This database provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and more rarely pyrrhotite and titanomagnetite) in these meteorites. Except for ureilites, achondrites appear much more heterogeneous than chondrites in metal content, both at the meteorite scale and at the parent body scale. We propose a model to explain the lack of or inefficient metal segregation in a low gravity context. The relationship between grain density and magnetic susceptibility is discussed. Saturation remanence appears quite weak in most metal‐bearing achondrites (HED and aubrites) compared to Martian meteorites. Ureilites are a notable exception and can carry a strong remanence, similar to most chondrites.  相似文献   

20.
The abundances of 22 elements have been determined in the recently fallen Murchison and Lost City meteorites. Analyses were performed by 14-MeV neutron activation, thermal neutron activation, and in a few cases by wet chemical techniques. On the basis of these data the composition of the Murchison chondrite is intermediate between previously reported analyses of Type II and Type III carbonaceous chondrites. The data for the Lost City chondrite in general agree well with mean values reported for H-group ordinary chondrites. The low oxygen content of the Lost City chondrite suggests that previously reported oxygen abundances in H-group falls may be too high due to oxidation in storage or weathering prior to collection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号