首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helium isotope characteristics of Andean geothermal fluids and lavas   总被引:10,自引:0,他引:10  
The first comprehensive helium isotope survey of the Andes is reported here. We have sampled geothermal fluids and phyric lava flows from the Southern (svz) and Central (cvz) Volcanic Zones, the volcanically active Pun˜a region and the Precordillera, Salta Basin, Longitudinal Valley and the aseismic region between the two volcanic zones. Although the active areas are characterised by significant differences in crustal age and thickness, the svz, cvz and Pun˜a are characterised by a wide and overlapping range in 3He/4He ratios (for fluids and phenocrysts) from predominantly radiogenic values to close to the MORB ratio. The measured ranges in 3He/4He ratios (R) (reported normalised to the air 3He/4He—RA) are: svz (0.18 < R/RA< 6.9); cvz (0.82 < R/RA< 6.0); and Pun˜a (1.8 < R/RA< 5.4). Modification of magmatic 3He/4He ratios by water/rock interactions (fluids) or post-eruptive grow-in of radiogenic 4He or preferential diffusive loss of 3He (phenocrysts) is considered unlikely; this means that the wide range reflects the helium isotope characteristics of magma bodies in the Andean crust. The mechanism controlling the 3He/4He ratios appears to be a mixing between mantle (MORB-like) helium and a radiogenic helium component derived from radioactive decay within the magma (magma aging) and/or interaction with 4He-rich country rock: a process expected to be influenced by pre-eruptive degassing of the mantle component. Assimilation of lower crust is also capable of modifying 3He/4He ratios, albeit to a much lesser extent. However, it is possible that the highest measured values in each zone were established by the addition of lower crustal radiogenic helium to MORB helium. In this case, the higher ‘base level’ ratios of the svz would reflect the younger crustal structure of this region. In contrast to helium, there is no overlap in the Sr or Pb isotope characteristics of lavas from the active zones: in all areas, therefore, 3He/4He ratios appear to vary independently of Sr and Pb isotope variations. This decoupling between the lithophile tracers and helium reflects the different processes controlling their isotopic characteristics: crust-mantle interactions, alone, for Sr and Pb but for helium the effects of pre-eruptive degassing and possibly magma aging are possibly superimposed. The presence of mantle helium in the Pun˜a region, and to a lesser extent in the Salta Basin, gives an across-arc perspective to the helium isotope distribution and shows mantle melting to occur significantly to the east of the active arc: this is most probably a consequence of lithospheric delamination. The Precordillera hot spring water has the only pure radiogenic helium signal of the entire sample suite and thus marks the western limit of asthenospheric mantle under the Andes.  相似文献   

2.
Helium, neon, and argon isotopic compositions were measured in two flows of the Columbia River flood basalt. The Imnaha Basalt has a 3He/4He ratio of 11.4 times atmospheric and 20Ne/22Ne and 21Ne/22Ne ratios characteristic of a plume component. The measured 3He/4He is a lower limit, due to possible preferential 3He loss and/or addition of radiogenic 4He. A Wanapum Basalt flow, erupted approximately 2 Ma later in the waning stages of volcanism, has more MORB-like noble gases. The He, Nd and Sr isotopic compositions of these lavas suggest that the Columbia River basalts were derived from the Yellowstone plume head which contained both ‘high-helium’ plume material and entrained depleted mantle. As the eruptions progressed the plume component in the melting region was gradually diluted or replaced.  相似文献   

3.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   

4.
We report isotope analyses of helium, neon, argon, and xenon using different extraction techniques such as stepwise dynamic and static crushing, and high-resolution stepwise heating of three mantle xenoliths from Réunion Island. He and Ne isotopic compositions were similar to previously reported Réunion data, yielding a more radiogenic composition when compared to the Hawaiian or Icelandic mantle plume sources. We furthermore observed correlated 129Xe/130Xe and 136Xe/130Xe ratios following the mantle trend with maximum values of 6.93 ± 0.14 and 2.36 ± 0.06, respectively. High-resolution argon analyses resulted in maximum 40Ar/36Ar ratios of 9000–11,000, in agreement with maximum values obtained in previous studies. We observed a well-defined hyperbolic mixing curve between an atmospheric and a mantle component in a diagram of 40Ar/36Ar vs. 20Ne/22Ne. Using a mantle 20Ne/22Ne of 12.5 (Ne–B) a consistent 40Ar/36Ar value of 11,053 ± 220 in sample ILR 84-4 was obtained, whereas extrapolations to a higher mantle 20Ne/22Ne ratio of 13.8 (solar wind) would lead to a much higher 40Ar/36Ar ratio of 75,000, far above observed maximum values. This favours a mantle 20Ne/22Ne of about 12.5 considered to be equivalent to Ne–B. Extrapolated and estimated 40Ar/36Ar ratios of the Réunion, Iceland, Loihi, and MORB mantle sources, respectively, tend to be linearly correlated with air corrected 21Ne/22Ne and show the same systematic sequence of increasing relative contributions in radiogenic isotopes (Iceland–Loihi–Réunion–MORB) as observed for 4He/3He. In general, He–Ne–Ar isotope systematics of the oceanic mantle can be explained by following processes: (i) different degree of mixing between pure radiogenic and pure primordial isotopes generating the MORB and primitive plume (Loihi-type) endmembers; (ii) relatively recent fractionation of He relative to Ne and Ar, in one or both endmembers; (iii) after the primary fractionation event, different degrees of mixing between melts or fluids of MORB and primitive plume affinity generate the variety of observed OIB data, also on a local scale; (iv) very late-stage secondary fractionation during magma ascent and magma degassing leads to further strong variation in He/Ne and He/Ar ratios.  相似文献   

5.
Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii   总被引:3,自引:0,他引:3  
We report new noble gas fusion and crushing data for six pillow rim glasses, recovered between 3 and 5 km water depth on the south rift zone of Loihi Seamount, Hawaii. Helium abundances of the glasses vary from 0.3 to 2.3 μcc/g, with 4He/3He ratios between 30000 and 27000 (24–27 RA), similar to previously reported values. The neon data form a correlation line which is similar to the Loihi-Kilauea line reported by Honda et al. [1], but extends to much higher ratios, up to 12.9 and 0.0382 for the 20Ne/22Ne and 21Ne/22Ne ratios, respectively. This provides conclusive evidence for the suggestion that the Hawaiian plume, thought to originate in the lower mantle, has a solar-like 20Ne/22Ne composition [1], but a slightly higher 21Ne/22Ne ratio. 40Ar/36Ar ratios of the deep rift-zone glasses are as high as 2600, and show a positive correlation with neon isotopic ratios. In contrast to neon and argon, all xenon isotopic compositions are isotopically indistinguishable from air, which either suggests preferential atmospheric contamination of xenon, or could indicate an atmospheric xenon isotopic composition for the lower mantle.  相似文献   

6.
In an attempt to constrain the origin of polycrystalline diamond, combined analyses of rare gases and carbon and nitrogen isotopes were performed on six such diamonds from Orapa (Botswana). Helium shows radiogenic isotopic ratios of R/Ra = 0.14–1.29, while the neon ratios (21Ne/22Ne of up to 0.0534) reflect a component from mantle, nucleogenic and atmospheric sources. 40Ar/36Ar ratios of between 477 and 6056 are consistent with this interpretation. The (129Xe/130Xe) isotopic ratios range between 6.54 and 6.91 and the lower values indicate an atmospheric component. The He, Ne, Ar and Xe isotopic compositions and the Xe isotopic pattern are clear evidence for a mantle component rather than a crustal one in the source of the polycrystalline diamonds from Orapa. The δ13C and δ15N isotopic values of − 1.04 to − 9.79‰ and + 4.5 to + 15.5‰ respectively, lie within the range of values obtained from the monocrystalline diamonds at that mine. Additionally, this work reveals that polycrystalline diamonds may not be the most appropriate samples to study if the aim is to consider the compositional evolution of rare gases through time. Our data shows that after crystallization, the polycrystalline diamonds undergo both gas loss (that is more significant for the lighter rare gases such as He and Ne) and secondary processes (such as radiogenic, nucleogenic and fissiogenic, as well as atmospheric contamination). Finally, if polycrystalline diamonds sampled an old mantle (1–3.2 Ga), the determined Xe isotopic signatures, which are similar to present MORB mantle – no fissiogenic Xe from fission of 238U being detectable – imply either that Xe isotopic ratios have not evolved within the convective mantle since diamond crystallization, or that these diamonds are actually much younger.  相似文献   

7.
Rhenium and other trace element data were obtained in situ by laser ablation ICP-MS analysis of submarine-erupted volcanic glasses and olivine-hosted melt inclusions from the Valu Fa Ridge, the south tip of the Lau Basin, in the southwestern Pacific Ocean. The chemistry of the Lau Basin basaltic glasses changes systematically from compositions similar to MORB in the Lau Spreading Centers, to more arc-like compositions in the Valu Fa Ridge, providing geochemical profiles both along the Lau Spreading Centers (ridges) and across the Valu Fa Ridge. The east seamount samples of the Valu Fa Ridge have diagnostic trace element ratios (Ba/Nb, Nb/U, Ce/Pb) close to global arc averages, with high Ba/La, indicating addition of considerable amounts of subduction-released fluids. In contrast, samples from the west seamount and the Lau Spreading Centers show a smaller influence from subduction fluids. The variable degrees of subduction influences apparent in the chemistry of these suites provide an ideal means to explore the mechanisms of Re enrichment in undegassed arc magmas. All of the analyzed arc melts have significantly higher Re concentrations than previously published, largely subaerially erupted samples, confirming that high Re is a characteristic of undegassed arc magmas. The east seamount samples are characterized by higher Re and lower Yb/Re than the more MORB-like Lau Spreading Center lavas. The lack of correlation between Yb/Re and Fo of host olivine suggests that low Yb/Re is not due to magmatic differentiation. When the Lau Basin sample suite is plotted together with MORB data, Yb/Re is positively correlated with Ce/Pb and Nb/U, and negatively correlated with Ba/Nb, indicating that Re is much more mobile than Yb during dehydration of subducted slabs. Thus, Re enrichment in arc magmas is likely due to addition of Re via fluids released from subducted slabs; the recognition of high Re in arcs favors arguments for a slab origin of radiogenic 187Os/188Os components in arc rocks.  相似文献   

8.
The isotopic composition of helium emitted from geothermal springs in the southern Tibetan plateau, reported as Rc/RA (Rc=air corrected sample 3He/4He, RA=air 3He/4He), ranges from 0.013 to 0.38, and defines two principal domains. In southernmost central Tibet, helium isotope ratios are typical of radiogenic helium production in the crust (Rc/RA<0.05, crustal helium domain). Further north, there is a resolvable 3He anomaly consistent with a mantle contribution (R/RA>0.1, mantle helium domain). The highest values of 0.27–0.38 RA occur at the southern end of the Karakoram fault. The boundary between the two domains lies 50–100 km north of the Indus-Zangpo suture zone. There seems to be no association between the 3He anomaly and zones of active normal faulting and litho-tectonic crustal units, such as the ultramafic rocks of the Indus-Zangpo suture zone and the Gangdese intrusive belt. Although scavenging of mantle-derived helium, stored in large ultrabasic and basic intrusions in the crust, cannot be ruled out entirely, we argue that the 3He anomaly most plausibly reflects degassing of volatiles from young (Quaternary) mantle-derived melts intruded into the crust. As such, it defines the southern limit of recent mantle melting and mantle melt extraction beneath the Tibetan plateau. The southern limit of the 3He anomaly coincides with the junction between the Indian and Asian plates, in the region where the Indian lithospheric slab steepens and is subducted beneath Tibet as suggested by seismic studies. Recent mantle melting and melt extraction is confined to the Asian mantle, but the southern limit of the melt zone may have migrated northwards during the last 10 Ma as the Indian lithosphere has progressively underthrust the Himalayas and Tibet.  相似文献   

9.
Analytical procedures in the determination of iodine-129 (half-life: 1.6×107 y) have been studied using accelerator mass spectrometry (AMS), with special references to the separation procedures of iodine from soil samples for the AMS measurement. Iodine was successfully volatilized from soil samples by pyrohydrolysis at 1000 °C and collected in a trap solution. Iodine was purified from the matrix by solvent extraction. Finally, it was precipitated as silver iodide to make a target for AMS. In order to obtain information on the 129I/127I ratio in a chemical blank (or iodine carrier), we have determined the ratios in several iodine reagents and found that the ratios fell in a narrow range around 1.7×10−13. The detection limit for soil sample (1 g material) by the present method was about 0.01 mBq/kg or 4×10−11 as the ratio of stable iodine (129I/127I ratio), i.e. these values were much better than that by neutron activation analysis (NAA) used in our previous studies. We have applied this method in the analysis of soil samples collected from different places in Japan. We could successfully determine 129I in soil samples with low 129I concentrations, which could not be detected by NAA. Sample size necessary for the soil analysis by AMS was only about 0.5 g or less, whereas about 100 g of the sample were required for NAA [Muramatsu, Y., Ohmomo, Y., 1986. Iodine-129 and iodine-127 in environmental samples collected from Tokaimura/ Ibaraki, Japan. Sci. Total Environ. 48, 33-43]. Using this method, new data were obtained for the 129I levels in 20 soil samples collected from background areas far from nuclear facilities, and the ranges were 1.4×10−5−4.5×10−3 Bq/kg as 129I concentrations and 3.9×10−11−2.2×10−8 as 129I/127I ratios. These values are useful in understanding the 129I levels in Japanese environments. Higher 129I concentrations were observed in forest soils than those in field and rice paddy soils should be related to the interception effect of atmospheric 129I due to tree canopies. Relatively high 129I/127I ratios found in rice paddy soils could be explained by their low stable iodine concentrations which were caused by the desorption of stable iodine from the rice paddies during the cultivation.  相似文献   

10.
Noble gas concentrations and isotopic compositions have been determined for four submarine volcanic glasses from the Valu Fa Ridge (VFR) in the southern Lau Basin. The samples are the least differentiated ones from this area, and they display enrichments in fluid-mobile elements similar to the nearby island arc. 3He/4He ratios are slightly below average MORB (6.8–7.8 times atmospheric), whereas Ne, Ar, Kr, and Xe have isotopic compositions very similar to air. Together with previously published data from the Valu Fa Ridge and other spreading segments in the Lau Basin, our data show a systematic latitudinal variation of increasing Ne, Ar, Kr, and Xe abundances from north to south as well as Ne and Ar isotopic compositions changing from MORB-like to atmosphere-like in the same direction. Moreover, isotopic compositions and noble gas abundances of the lavas correlate strongly with Ba/Nb ratios and H2O concentrations. Based on these observations and mass balance arguments, we propose that the atmospheric noble gases come from the subducting oceanic crust and are not due to shallow contamination with air dissolved in seawater or assimilation of old crust. Our data suggest that the noble gases released from the subducting slab are atmospheric and thus contain little or no solar He and Ne. In addition to the fact that ratios of He to heavy noble gases are small in aged ocean crust, He has possibly fractionated from the other noble gases due to its higher diffusivity, and thus He transport from the subducting slab into the mantle wedge is probably insignificant. We propose that the 3He/4He ratios lower than MORB observed in the VFR lavas result from radiogenic ingrowth of He in a highly depleted, and hence degassed, mantle wedge after the enrichment of U and Th released from the downgoing slab.  相似文献   

11.
New noble gas data of ultramafic xenoliths from Réunion Island, Indian Ocean, further constrain the characteristics of primordial and radiogenic noble gases in Earth’s mantle plume reservoirs. The mantle source excess of nucleogenic 21Ne is significantly higher than for the Hawaiian and Icelandic plume reservoirs, similar to excess of radiogenic 4He. 40Ar/36Ar of the Réunion mantle source can be constrained to range between 8000 and 12 000, significant 129Xe and fission Xe excess are present. Regarding the relative contribution of primordial and radiogenic rare gas nuclides, the Réunion mantle source is intermediate between Loihi- and MORB-type reservoirs. This confirms the compositional diversity of plume sources recognized in other radioisotope systematics. Another major result of this study is the identification of the same basic primordial component previously found for the Hawaiian and Icelandic mantle plumes and the MORB reservoir. It is a hybrid of solar-type He and Ne, and ‘atmosphere-like’ or ‘planetary’ Ar, Kr, Xe (Science 288 (2000) 1036). 20Ne/22Ne ratios extend to maximum values close to 12.5 (Ne-B), which is the typical signature of solar neon implanted as solar corpuscular radiation. This suggests that Earth’s solar-type noble gas inventory was acquired by small (less than km-sized) precursor planetesimals that were irradiated by an active early sun in the accretion disk after nebular gas dissipation, or, alternatively, that planetesimals incorporated constituents irradiated in transparent regions of the solar nebula. Previously, such an early irradiation scenario was suggested for carbonaceous chondrites which follow common volatile depletion trends in the sequence CI–CM–CV–Earth. In turn, CV chondrites closely match Earth’s mantle composition in 20Ne/22Ne, 36Ar/22Ne and 36Ar/38Ar. This indicates that mantle Ar could well be a planetary component inherited from precursor planetesimals. However, a corresponding conclusion for mantle Kr and Xe is less convincing yet, but this may be just due to the lack of appropriate ‘meteoritic’ building blocks matching terrestrial composition. Alternatively, heavy noble gases in Earth’s mantle could be due to admixing of severely fractionated air, but this effect must have affected all mantle sources to a very similar extent, e.g. by global subduction before the last homogenization of the mantle reservoirs.  相似文献   

12.
We report new helium isotope results for 49 basalt glass samples from the Mid-Atlantic Ridge between 1°N and 47°S.3He/4He in South Atlantic mid-ocean ridge basalts (MORB) varies between 6.5 and 9.0 RA (RA is the atmospheric ratio of1.39 × 10−6), encompassing the range of previously reported values for MORB erupted away from high3He/4He hotspots such as Iceland. He, Sr and Pb isotopes show systematic relationships along the ridge axis. The ridge axis is segmented with respect to geochemical variations, and local spike-like anomalies in3He/4He, Pb and Sr isotopes, and trace element ratios such as(La/Sm)N are prevalent at the latitudes of the islands of St. Helena, Tristan da Cunha and Gough to the east of the ridge. The isotope systematics are consistent with injection beneath the ridge of mantle “blobs” enriched in radiogenic He, Pb and Sr, derived from off-axis hotspot sources. The variability in3He/4He along the ridge can be used to refine the hotspot source-migrating-ridge sink model.

MORB from the 2–7°S segment are systematically the least radiogenic samples found along the mid-ocean ridge system to date. Here the depleted mantle source is characterized by87Sr/86Sr of 0.7022, Pb isotopes close to the geochron and with206Pb/204Pb of 17.7, and3He/4He of 8.6–8.9 RA. The “background contamination” of the subridge mantle, by radiogenic helium derived from off-ridge hotspots, displays a maximum between 20 and 24°S. The HePb and HeSr isotope relations along the ridge indicate that the3He/4He ratios are lower for the hotspot sources of St. Helena, Tristan da Cunha and Gough than for the MORB source, consistent with direct measurements of3He/4He ratios in the island lavas. Details of the HeSrPb isotope systematics between 12 and 22°S are consistent with early, widespread dispersion of the St. Helena plume into the asthenosphere, probably during flattening of the plume head beneath the thick lithosphere prior to continental breakup. The geographical variation in theHe/Pbratio deduced from the isotope systematics suggests only minor degassing of the plume during this stage. Subsequently, it appears that the plume component reaching the mid-Atlantic ridge was partially outgassed of He during off-ridge hotspot volcanism and related melting activity.

Overall, the similar behavior of He and Pb isotopes along the ridge indicates that the respective mantle sources have evolved under conditions which produced related He and Pb isotope variations.  相似文献   


13.
Noble gases were extracted in steps from grain size fractions of microdiamonds ( < 100 μm) from the Kokchetav Massif, Northern Kazakhstan, by pyrolysis and combustion. The concentration of 4He in the diamonds proper (liberated by combustion) shows a 1/r dependence on grain size. For grain diameters > 15 μm the concentration also decreases with the combustion step. Both results are clear evidence that 4He has been implanted into the diamonds from -decaying elements in the surrounding matrix. The saturation concentration of 4He(5.6 × 10−4 cm3 STP/g) is among the very highest observed in any terrestrial diamonds. Fission xenon from the spontaneous fission of 238U accompanies the radiogenic 4He; the 136Xef/4He ratio of (2.5 ± 0.3) × 10−9 agrees well with the production ratio of 2.3 × 10−9 expected in a reservoir where Th/U 3.3. Radiogenic 40Ar is predominantly ( > 90%) set free upon combustion; it also resides in the diamonds and appears to have been incorporated into the diamonds upon their formation.

3He, on the other hand is mainly released during pyrolysis and hence is apparently carried by ‘contaminants’. The concentration in the diamonds proper is of the order of 4 × 10−12 cm3 STP/g, with a 3He/4He ratio of 1 × 10−8. Excess 21Ne, similarly, appears to be present in contaminants as well as in diamonds proper. These two nuclides in the contaminants must have a nucleogenic origin, but it is difficult to explain their high concentrations.  相似文献   


14.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   

15.
YASUO  IKEDA  KEISUKE  NAGAO  ROBERT J.  STERN  MAKOTO  YUASA & SALLY  NEWMAN 《Island Arc》1998,7(3):471-478
Noble gas concentrations and isotopic compositions have been measured in eight samples of pillow basalt glasses collected from seven different localities along 250 km of the Mariana Trough spreading and rifting axis. The samples have uniform and mid-ocean ridge basalt (MORB)-like 3He/4He values of 9–12 × 10–6 (6.4–8.6 times atmospheric) despite large variations in 4He. Concentrations of the noble gases Ne, Ar, Kr, and Xe show much smaller variations between samples, but larger variations in isotopic compositions of Ne, Ar, and Xe. Excess radiogenic 21Ne is observed in some samples. 40Ar/36Ar varies widely (atmospheric to 1880). Kr is atmospheric in composition for all samples. Some samples show a clear excess 129Xe, which is a well-known MORB signature. Isotopic compositions of the heavier noble gases (Ar, Kr, and Xe) in some samples, however, show more atmospheric components. These data reflect the interaction of a MORB-like magma with an atmospheric component such as seawater or of a depleted mantle source with a water-rich component that was probably derived from the subducting slab.  相似文献   

16.
238U, 232Th, 230Th and 226Ra abundances have been measured in six samples of recent Hawaiian basalt by high precision mass spectrometry, in an attempt to compare the melting process in plumes and at spreading ridges. The data reveal a very small range in (230Th/238U) activity ratio up to a maximum value of 1.02 ± 0.01, and (226Ra/230Th) activity ratios which lie between 1.10 ± 0.015 and 1.19 ± 0.02. UTh and RaTh abundances are linearly correlated demonstrating that the disequilibria predate crystallisation and differentiation. Using recently published estimates for the bulk partition coefficients of U and Th, the results are consistent with melting rates > 10−3 kg m−3 a−1 at porosities < 10−3 for dynamic fractional melting in the garnet stability field.  相似文献   

17.
Osmium, strontium, neodymium, and lead isotopic data have been obtained for 30 hand picked samples of basaltic glass from the Pacific, Atlantic and Indian mid-oceanic ridges. Large variations in Os isotopic ratios exist in the glasses, from abyssal peridotite-like values to radiogenic compositions similar to oceanic island basalts (187Os/186Os and 187Os/188Os ratios range from 1.06 to 1.36 and from 0.128 to 0.163, respectively). Os isotopic and elemental data suggest the existence of mixing correlations. This relationship might be ascribed to secondary contamination processes; however, such a hypothesis cannot account for the negative correlation observed between Os and Nd isotopes and the existence of complementary covariations between Os and SrPb isotopes. In this case, OsSrNdPb isotopic variations are unrelated to late post-eruption or shallow level contamination. These relationships provide strong evidence that the Os isotopic composition of the samples are derived from the mantle and thus implies a global chemical heterogeneity of the oceanic upper mantle. The results are consistent with the presence of recycled oceanic crust in the mantle sources of mid-ocean ridge basalts, and indicate that the unique composition of the upper mantle below the Indian ocean results from its contamination by a mantle component characterized by radiogenic Os and particularly unradiogenic Nd and Pb isotopic compositions.  相似文献   

18.
Fresh basalt glasses from the North Chile Ridge (NCR) in the southeastern Pacific have Ne isotopic compositions distinctly different from typical mid-ocean ridge basalts (MORB). In a three-isotope plot of 20Ne/22Ne vs. 21Ne/22Ne, the NCR data define a correlation line with a slope smaller than that of the MORB correlation line, i.e. their Ne composition is more nucleogenic than that of MORB. 3He/4He ratios are slightly lower than the MORB average, whereas in a few stepwise heating fractions very high 40Ar/36Ar ratios up to 28,000 are found. One model to explain the data assumes contamination of the NCR mantle source by material from the continental or oceanic crust, but in addition to difficulties with quantitatively reconciling the noble gas patterns with such a model it seems unable to account for some geochemical characteristics of NCR basalts reported earlier [Bach et al., Earth Planet. Sci. Lett. 142 (1996) 223–240], such as depletions in highly incompatible elements and unradiogenic Sr isotope compositions. Therefore we favor the scenario of a mantle source which was depleted and degassed previously, possibly as a residue from mantle melting beneath the southern East Pacific Rise that was transported to the NCR and melted again. The time during which such a depleted reservoir would have to be separated from the MORB mantle is estimated at 10–100 Ma based on U/Th–Ne systematics, in reasonable agreement with the time scale deduced from the formation history of the NCR and the temporal evolution of the southeast Pacific.  相似文献   

19.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

20.
The currently active off-rift central volcano Öræfajökull in south-east Iceland sits unconformably on much older (10–12 Ma) and eroded crust. The composition of recent volcanics ranges from basalt to rhyolite, but the series is more sodic alkaline than the common rift zone tholeiitic suites. In this study we present Sr, Nd, Pb and O isotopic data for a suite of Öræfajökull samples. The complete suite shows typical mantle values for oxygen isotopes. The 87Sr/86Sr ratios (average of 15 SAMPLES=0.703702) of the modern Öræfajökull rocks (basalts as well as rhyolites) are much higher than observed so far for any other Icelandic rocks. The 143Nd/144Nd ratios (average=0.512947; n=15) are lower than for rift rocks, but similar to rocks of the off-rift Snæfellsnes volcanic zone. Furthermore, the Öræfajökull rocks are enriched in the 207Pb/204Pb and 208Pb/204Pb isotope ratios compared to Icelandic rift basalts. The enriched nature of the suite indicates that Öræfajökull samples a source component that has characteristics common with EM2 type mantle. Furthermore, it is concluded that the silicic rocks of Öræfajökull formed by fractional crystallization from mafic melts rather than by partial melting of older crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号