首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
深部物质运动的气体地球化学特征   总被引:10,自引:0,他引:10  
根据氦同位素地球化学资料讨论了中国东部和云南腾冲地区上地幔的脱气。尽管地球脱气作用主要发生在地球形成时的十亿年间,但是后期的脱气作用仍是影响大气圈演化的主要因素。在两种力学性质不同的构造带──中国东部大陆裂谷和位于欧亚板块与印度板块缝合带的腾冲火山区,采集了天然气样,并分析了气体组分和氦同位素组成,较高的3He/4He值和地质、地球物理资料表明天然气和温泉气中的氦相当一部分是来自上地幔。来自上地幔的氦和其他气体自第三纪以来不断在气藏中聚集或向大气中逃逸。伴有源于上地幔的岩浆活动的地幔脱气是深部物质运动的具体表现形式,它对新生代气候演变可能有直接影响。  相似文献   

2.
对安妥岭斑岩钼矿床矿石中辉钼矿和黄铁矿进行了Pb同位素分析。安妥岭黄铁矿样品投点位于下地壳铅演化趋势线附近,辉钼矿样品投点位于上地幔铅演化趋势线附近;在Pb同位素Δβ-Δγ图解中,安妥岭样品数据点位于地幔源区和造山作用源区。这些Pb同位素特征表明安妥岭斑岩钼矿的成矿物质来源于上地幔-下地壳。同时,安妥岭斑岩钼Pb同位素示踪揭示了成矿期的构造运动波及到上地幔-下地壳,与安妥岭岩石圈拆沉作用这一深部动力学过程相吻合,安妥岭斑岩钼矿受控于太行山板内造山过程,其形成与太平洋板块的俯冲作用无关。  相似文献   

3.
天然气中的幔源稀有气体   总被引:29,自引:3,他引:29  
徐永昌 《地学前缘》1996,3(3):63-71
天然气为地球内流体的重要组成部分,天然气中幔源稀有气体是源于地球深部的地幔挥发分。文章以气体地球化学国家重点实验室有关研究为主,简要综述了此一领域的研究。氦的同位素3He/4He是幔源物质的重要判识指标,天然气中3He/4He值大于1.4×10-6时,表明有相当数量的幔源挥发分加入到天然气中,它是地球构造活动性强,地幔挥发分可以沿一定断裂体系进入沉积壳层的指示。在一定程度上氩同位素40Ar/36Ar及氖同位素20Ne/22Ne值也可指示构造环境的特征。天然气中稀有气体研究反映了我国东部含油气区具有最活跃的构造环境,中部最稳定,西部次稳定。在东部活跃的构造背景下,造成了幔源挥发分较普遍地加入到沉积壳层天然气中,形成了中国东部发现的世界首例壳-幔复合型氦资源,形成了一批与幔源挥发分成藏有关的二氧化碳资源。东部地区也成为幔源甲烷可能富集成藏的重要区域。  相似文献   

4.
温泉CO2气体组份和碳同位素的研究表明,腾冲热海温泉的CO2气体主要来源于地幔。CO2气体的碳同位素组成重于典型幔源碳、与溶解碳呈现同位素不平衡以及幔源挥发份在研究区的聚集都表明该区地下可能存在仍在脱气的岩浆体,所排出气体供给上方水热系统。幔源挥发份在地下的积聚可能对诱发该区的地震活动有着重要作用。此外,He-C体系的结果说明热海地下岩浆可能是MORB源岩浆经历地壳物质混染作用而形成的。  相似文献   

5.
近年所获得的华北各地区太古代变质火山岩系9个较准确的Sm-Nd同位素年龄及初始Nd同位素比值表明,华北太古代(3500—2500Ma)上地幔都是亏损的,但在1000Ma范围內其ε_(Nd)值一直恒定在+3左右,与全球太古代亏损地幔Nd同位素演化规律一致。这表明华北太古代的构造体制有可能使大量地壳物质重新进入地幔从而保持ε_(Nd)值的恒定。如果华北大陆岩石圈地幔的主体是在太古代时从对流上地幔中分离出来的,利用该区太古代上地幔Nd同位素组成及其可能的sm/Nd值进行计算,可获得该区岩石圈非交代地幔应是与N型大洋中脊玄武岩(以下简称MORB)源类似或更亏损的高亏损地幔,其现代ε-(Nd)值最大变化范围在+7—+23之间。至今在华北我们尚未发现由这种高亏损非交代大陆岩石圈地幔产生的大陆玄武岩。如果某些大陆玄武岩可能产生于大陆岩石圈地幔,则其源区必定是经过地幔交代作用再富集了的地幔。  相似文献   

6.
对取自赣南地区10个温泉的地热气体进行了气体化学成分及氦、碳、氖同位素组成的分析。该区地热气体可分为CO2型和N2型两种类型。CO2型地热气体分布在赣南东南部地区,主要成分是CO2,占总体积96.47%以上,二氧化碳气体的δ13C值为 -5.50‰~-3.49‰(PDB),平均为 -4.66‰,为幔源无机成因,其氦同位素组成为1.36~2.27 Ra,具有明显的幔源成因特征,最高约有28.2%的氦源于地幔,其N2-Ar-He关系研究表明,该型地热气体中的氮源于地幔-地壳-大气混合成因。研究揭示该区CO2型地热气体属幔源无机成因气,是地幔脱气作用的产物。N2型地热气体分布在赣南西部地区,N2含量占91.04%以上,其中二氧化碳气体的δ13C值为 -23.7‰~-12.6‰,平均为 -17.82‰,为壳源有机成因,其氦同位素组成为0.06~0.13 Ra,具有明显的壳源放射性成因特征,3He/4He 与 4He/20Ne关系和He-Ar-N2关系研究表明,N2型温泉气主要来源于大气,并有壳源气体的贡献。  相似文献   

7.
南海北缘新生代构造演化的深部制约(I):幔源包体   总被引:14,自引:1,他引:14  
对南海北缘新生代玄武岩中幔源包体的研究揭示了该地区上地幔的不均一性和复杂的地幔过程。部分橄榄岩中单斜辉石(Cpx)具有极低的Ti含量(<160μg/g),这与这些样品中较高的Cpx含量(8%~12%)不匹配。主元素成分变化趋势以及Cpx中HREE分异现象,暗示该区上地幔经历了变压熔融。地幔熔融始于深部的石榴子石稳定区并延续到浅部的尖晶石稳定区(总熔融程度达23%)。这些熔融残余受到了硅酸盐和含水流体的交代。橄榄岩的微量元素组成指示南海北缘地幔具有大陆裂谷型地幔的特征,而与俯冲带之上的地幔楔或受俯冲作用影响的地幔有很大的差别。包体的平衡温度和橄榄石中Fo之间的负相关关系暗示岩石圈地幔具成分分层结构。该地幔的下部由大洋型橄榄岩组成,而地幔顶部为类似于太古宙-元古宙地幔的富斜方辉石方辉橄榄岩。这一岩石圈结构与该地区岩石圈的减薄和软流圈对老岩石圈的置换有关。深源岩石记录的信息支持南海海盆是陆缘扩张引起的主动盆地的观点。  相似文献   

8.
氦气的天然气地质意义   总被引:1,自引:0,他引:1  
李广之  高伟  江浩  庄原 《物探与化探》2009,33(2):154-156
氦气具有的不易液化、稳定性好、扩散性强等特点,使它既能在天然气藏中富集,又能垂向运移至地表。氦有大气氦、壳源氦和幔源氦3种来源。3He主要来源于地幔;4He主要来源于地壳,通常以R/Ra来表示氦的来源。氦气具有丰富的天然气地质意义:地表氦气浓度异常有一定油气指示意义;氦气的同位素分布特征值(R/Ra)还具有指示油气构造环境、指示断裂带及旁证CO2气藏的成因等地质意义。  相似文献   

9.
对秦岭造山带4个构造单元前寒武纪基性火山岩64个岩石样品的Pb同位素,24个岩石样品的Nd同位素和38个岩石样品的微量元素组成进行了同位素组成间、微量元素对比值间和同位素组成与微量元素含量比值间相关变异分析,并研究了岩石Pb同位素组成的拓扑学特征.结果表明:秦岭造山带前寒武纪地幔可划分成4个化学分区;4个分区中华北地台南缘区长期独立演化,具典型大陆岩石圈特征;另3个地幔分区间相关演化,且均不同程度地与大洋环境相联系,说明在岩石圈尺度上前寒武纪北秦岭与华北地台间的边界是秦岭地区最重要的地幔化学不均一界面;前寒武纪北秦岭带幔源岩浆与南秦岭带和扬子地台北缘区幔源岩浆的源区组成既有差异,晚期又有一定相似性,反映前寒武纪晚期南秦岭带和扬子地台岩石圈块体已向北秦岭带和华北地台俯冲,故南北秦岭间的分界既是秦岭造山带内的地幔化学不均一界面,又是秦岭造山带岩石圈构造界面;秦岭造山带各构造区带在造壳过程同时也存在地壳物质回返地幔的过程,由于岩石圈构造环境的差异,不同时期各构造区带参加壳幔物质循环的地壳组分有所不同  相似文献   

10.
松辽盆地南部无机CO2成藏机理与分布   总被引:2,自引:0,他引:2  
松辽盆地南部的幔源CO2气主要存在3种脱气方式:热底辟体脱气、岩浆房脱气和地幔热底垫体脱气。古近纪末-新近纪时期的岩浆活动和岩石圈断裂是无机CO2气藏形成的主控因素;属于岩石圈断裂的郯庐断裂北部断裂系,当处于活动期时,诱导幔源岩浆上涌,促使无机CO2气从幔源岩浆脱出,先期富集在下地壳底部,并沿着下地壳的网状剪切带迂回向上运移到达拆离带;当断至拆离带的低角度基底断裂处于活动期时,无机CO2气体沿着壳源断裂上移进入地壳浅层圈闭富集成藏。气源断裂体系的展布与幔源火成岩活动脱气是无机CO2气运聚成藏的两大主控因素。幔源CO2气藏主要分布在长岭断陷和德惠断陷:前者主要沿着孙吴-双辽断裂带分布,后者受控于哈尔滨-四平断裂带。长岭断陷的幔源CO2气藏埋藏较深,由于向北西的红岗阶地和东部的德惠断陷层位在变新,导致CO2气藏埋藏深度逐渐变浅。  相似文献   

11.
郯庐断裂带的岩石圈结构及其成因分析   总被引:36,自引:1,他引:35  
横穿郯庐断裂带的五条地学断面揭示,断裂带两侧地壳结构明显不同,这是平移运动造成不同块体拼合的结果。早白垩世走滑期的岩浆活动,指示当时断裂带切入了壳-幔边界。这表明断裂带在走滑中切穿了整个地壳,莫霍面当时应为平缓的大型拆离面,壳-幔之间发生了显著的失耦。断裂带在晚白垩世-早第三纪的伸展活动中,软流圈进行了强烈的上隆,岩石圈出现了显著的细颈化,属于纯剪切伸展模式。在晚第三纪以来的挤压活动中,浅埋软流圈背景上较高的上地幔温度,使郯庐断裂带成为岩石圈薄弱带,从而发生了较强的逆冲活动和大规模幔源玄武岩浆的喷发。  相似文献   

12.
中国东部中—新生代,下部岩石圈存在壳与幔、岩石圈与软流圈两个相互作用带,它们是重要的岩浆源区,在层圈相互作用中,热和物质的交换及其动力学过程是引起中、新生代岩石圈内部层圈间的厚度调整、岩石圈不均匀减薄以及区域构造-岩浆-成矿作用的重要机理。大陆内部的壳-幔作用有3种类型:地幔来源的底侵熔体与下地壳的作用;下地壳拆沉进入弱化(weakening)了的岩石圈地幔二者发生的作用以及陆-陆碰撞深俯冲带的壳-幔相互作用。它们形成的火山岩组合有一定的差别,但源区都含有地壳组分。岩石圈-软流圈的作用带也是重要的岩浆源区,源区是以软流圈地幔为主,基本不含地壳组分。东部岩石圈的减薄时间大体与出现大规模软流圈来源的玄武岩喷发的时间一致,也与上述两类层圈作用转换的时间一致,大约在100Ma以后。  相似文献   

13.
《Gondwana Research》2013,23(3-4):1060-1067
Convergence between the Indian plate and the Eurasian plate has resulted in the uplift of the Tibetan Plateau, and understanding the associated dynamical processes requires investigation of the structures of the crust and the lithosphere of the Tibetan Plateau. Yunnan is located in the southwest edge of the plateau and adjacent to Myanmar to the west. Previous observations have confirmed that there is a sharp transition in mantle anisotropy in this area, as well as clockwise rotations of the surface velocity, surface strain, and fault orientation. We use S receiver functions from 54 permanent broad-band stations to investigate the structures of the crust and the lithosphere beneath Yunnan. The depth of the Moho is found to range from 36 to 40 km beneath southern Yunnan and from 55 to 60 km beneath northwestern Yunnan, with a dramatic variation across latitude 25–26°N. The depth of the lithosphere–asthenosphere boundary (LAB) ranges from 180 km to less than 70 km, also varying abruptly across latitude 25–26°N, which is consistent with the sudden change of the fast S-wave direction (from NW–SE to E–W across 26–28°N). In the north of the transition belt, the lithosphere is driven by asthenospheric flow from Tibet, and the crust and the upper mantle are mechanically coupled and moving southward. Because the northeastward movement of the crust in the Burma micro-plate is absorbed by the right-lateral Sagaing Fault, the crust in Yunnan keeps the original southward movement. However, in the south of the transition belt, the northeastward mantle flow from Myanmar and the southward mantle flow from Tibet interact and evolve into an eastward flow (by momentum conservation) as shown by the structure of the LAB. This resulting mantle flow has a direction different from that of the crustal movement. It is concluded that the Sagaing Fault causes the west boundary condition of the crust to be different from that of the lithospheric mantle, thus leading to crust–mantle decoupling in Yunnan.  相似文献   

14.
We present model of the structure and development of the entire lithosphere beneath the western Eger Rift (ER). Its crustal architecture and paths of volcanic products are closely related to sutures/boundaries of uppermost mantle domains distinguished by different orientations of olivine fabric, derived from 3-D analysis of seismic anisotropy. Three different fabrics of the mantle lithosphere belong to the Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD) microplates assembled during the Variscan orogeny. Dipping fossil (pre-assembly) olivine orientations, consistent within each unit, do not support any voluminous mantle delamination. The variable rift structure and morphology depend on the character of the pre-rift suture between the northern ST unit and the TB/MD units in the southern rift flank. The proper rift with typical graben morphology has developed above the steep lithosphere-scale suture between the ST and TB units. This subduction-related boundary originated from the closure of the ST Ocean. Parts of the crust and mantle lithosphere were dragged there into asthenospheric depths and then rapidly uplifted. The suture is marked by abrupt change in the mantle fabric and sharp gradients in regional gravity field and in metamorphic grade. The secular TB-side-down normal movement is reflected in deep sedimentary basins, which developed since the Carboniferous to Cenozoic and in topography. The graben morphology of the ER terminates above the “triple junction” of the ST, TB and MD mantle lithospheres. The junction is characterized by offsets of surface boundaries of the tectonic units from their mantle counterparts indicating a detachment of the rigid upper crust from the mantle lithosphere. The southwest continuation of the rift features in Bavaria is expressed in occurrences of Cenozoic sediments and volcanics above an inclined broad transition zone between the ST and MD lithospheres. Schematic scenario of evolution of the region consists mainly of a subduction of the ST lithosphere to depths around 140 km, exhumation of HP-HT rocks and the post-tectonic granitoid plutonism.  相似文献   

15.
A linear zone with high strain rates along the Japan Sea coast, the Niigata-Kobe Tectonic Zone (NKTZ), is considered to be associated with rheological heterogeneities in the lower crust and/or upper mantle. Helium isotope variations along the NKTZ reveal a close association with the geophysical evidence for rheological heterogeneities in the crust and mantle. In the southern NKTZ, the 3He/4He ratios lower than 3.4 Ra (Ra denotes the atmospheric 3He/4He ratio of 1.4 × 10−6) could be interpreted as a two-component mixture of helium stored in aqueous fluids driven off the subducting oceanic crust and radiogenic crustal helium. Higher 3He/4He ratios are observed in the central NKTZ where Quaternary volcanoes and high-temperature hot springs are concentrated, suggesting that the 3He emanation manifest in the central NKTZ results from the effective transfer of mantle helium by intrusion and degassing of mantle-derived magma in the crust. In the northern NKTZ where two large inland earthquakes occurred recently, there appears to be many samples with 3He/4He ratios significantly higher than those observed in the fore-arc side of northeast Japan. A plausible source of mantle helium could be attributed to upward mobilization of aqueous fluids generated by dehydration of the subducting Pacific Plate slab.  相似文献   

16.
The Northern Mongolia-Western Transbaikalia rift zone is the largest Mesozoic riftogenic structure in eastern Asia and extends for a distance of more than 1200 km. The zone consists of depressions and grabens, which were formed between 233 and 188 Ma and are filled with basaltic and basalt-comendite (bimodal) volcanic associations accompanied by numerous peralkaline granite massifs. Geochemical and isotope (Sr, Nd, and Pb) studies showed that mantle and crustal sources contributed to the formation of the magmatic rocks of the rift zone. The basalts were formed from incompatible element-enriched mantle sources. Geochemical and isotope-geochemical data suggest that the peralkaline salic rocks (comendites and peralkaline grantoids) and basalts are genetically related and were formed by the fractionation of a common parental magma. In addition, the magmatic associations contain peralkaline granites and comendites whose isotope signatures indicate their formation through the crustal contamination of derivatives of basaltic melts. The rift zone has arisen during the formation of the Mongolia-Transbaikalia zoned magmatic area in a complex geodynamic setting, combining collision in the Mongolia-Okhotsk suture with a mantle plume impact. The rift zone occupies the northern periphery of the area, being controlled by the Northern Mongolia-Transbaikalia fault system, which marks the boundaries (sutures) of large terranes in the lithosphere. Asthenospheric traps beneath suture boundaries served as pathways for the penetration of a mantle plume into the upper lithosphere, thus playing an important role in the localization of the riftogenic processes.  相似文献   

17.
During the evolution of continents, compressive tectonic phases can leave certain tectonic patterns in the lithosphere to be observed by reflection seismology. Also, in the area of the trans-European suture zone (TESZ) in the Baltic Sea, several relatively short, but occasionally strong, compressive phases have left their marks in the lithosphere in form of characteristic fault and thrust zones in the rigid parts of crust and mantle, especially clear and well investigated in some sediment troughs. At depth, interwedging processes seem to be generated by colliding tectonic units with different rheology, creating bi-vergent fault structures, possibly—but not necessarily—initiated by a previous subduction of intervening oceanic lithosphere. Near the surface, reactivation and inversion of previous faults are very selective. Transpressional processes and the reduced friction inside the faults are suggested to play a major role. It is assumed that the transfer of plate boundary stressed over long distances is performed mainly through the thick and rigid mantle lid, not through the thin, rigid, and heterogeneous upper crust. This assumption involves mechanisms of a vertical transfer of stresses from the mantle into the inversion area, and some signs of such a process are seen around the Tornquist Zone (TZ). Several examples of compressive transfer of stresses are shown.  相似文献   

18.
广西地处华南地块、印支地块与西太平洋板块的汇合部位,因特殊的构造部位,广西区内大地构造单元归属、构造单元边界等许多基础地质问题一直存在争议.自新生代以来的板块构造运动对岩石圈的改造,广西地壳与上地幔在地震波速度及温度结构方面具有显著差异.应用卫星重、磁异常数据以及区域重力和航磁资料对广西地区岩石圈密度和磁化率结构及其与上地壳构造的关系开展了研究,结果显示广西地区地壳密度和上地壳磁性结构与现今地表构造较为契合,但下地壳密度结构与上地幔存在不连续现象;此外,岩石圈磁化率结构指示中下地壳存在不同范围和程度的解耦.对广西岩石圈密度与磁性结构的解读认为,在中生代以来岩石圈被大规模改造的背景下,幔源物质上侵至上地壳的规模和范围都有限,这可能是整个广西地区上地幔结构与地壳构造不对应的主要原因.   相似文献   

19.
中国东部幔源气体同位素地球化学   总被引:11,自引:0,他引:11  
中国东部地幔岩包体及其单矿物中发育有大量的流体包裹体,采用阶段加热真空热爆的 方法脱出幔源包裹体中的气体,测试了气体的碳、氧、氦、氮等同位素组成。CO2的σ13℃普遍较低, 主峰值为(-18~-22)×10-3 ,多数样品在高温下的 σ13℃普遍小于低温下的对应值。氧同位素变 化也很大,从-3.4×10-3至25.5×10-3(SMOW),并呈现多峰的特征。σ18O与σ1C3具有很好的相 关性,可能受控于同种分馏机制。C、O同位素组成特征表明,中国东部大陆地幔具有很大的化学不 均一性,可能是由地幔碳的多样性、源区的不均一性或地幔交代作用所致。氧同位素的变化可能是 结晶作用、去气作用或地壳物质混染所至。4He含量变化范围为(0.24~25.00)×10-8,3He/4He变 化范围为(0.46~12.80)×10-6,40Ar含量从0.97×10-6到34.18×10-6,40Ar/36Ar变化范围为 250.58~1202。3He/4He的变化反映了亏损地幔和富集地幔的存在。不同地区40Ar/36Ar的巨大差 异显示了地幔脱气程度的不同,也说明在地幔演化中Ar、He同位素地球化学行为的差异。  相似文献   

20.
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH)   总被引:5,自引:0,他引:5  
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a "sandwich" structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号