首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

2.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

3.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

4.
[Correction added after online publication 3 August 2010 ‐ ‘prelate’ has been changed to ‘pre‐late’ throughout the text]. Using apatite fission track and (U‐Th‐Sm)/He thermochronology, we report the low‐temperature thermal history of the Mesozoic Micang Shan Foreland Basin system, central China. This system, comprising the Hannan Dome hinterland, the northern Sichuan Foreland Basin and the intermediate frontal thrust belt (FB), shares a common boundary with three major tectonic terrains – Mesozoic Qinling‐Dabie Orogen, Mesozoic Sichuan Foreland Basin and Cenozoic elevated Tibetan Plateau. Results show: (1) a relatively rapid pre‐late Cretaceous cooling episode in the Hannan Dome; (2) a mid‐Cenozoic cooling phase (ca. 50°C at ca. 30 ± 5 Ma) within the northern Sichuan Basin; and (3) possible late Cenozoic cooling (ca. 25°C at ca. 16 ± 4 Ma) within the Hannan Dome‐FB, a phase which has also been reported previously from adjacent regions. The pre‐late Cretaceous cooling episode in the Hannan Dome is attributed to coeval tectonism in nearby regions. Mid‐Cenozoic cooling in the northern Sichuan Basin can possibly be attributed to either one of or a combination of shortening of the basin, onset of the Asian monsoon and drainage adjustment of the Yangtze River system, all of which are related to growth of the Tibetan Plateau. Possible late Cenozoic cooling in the hinterland and nearby regions is also probably related to the northeastward growth of the Tibetan Plateau. However, previous studies suggest a northeastward propagation for onset of cooling from the eastern Tibetan Plateau to western Qinling in response to northeastward lower crust flow from the central Tibetan Plateau. The timing of apparent late Cenozoic cooling in the Hannan Dome hinterland, at an intermediate locality, is not consistent with this trend, and supports a previous model suggesting northeastern growth of the Tibetan Plateau through reactivation of WE trending strike‐slip faults.  相似文献   

5.
Magallanes–Austral Basin (MAB) fill is preserved along a >1000 km north–south trending outcrop belt in the southern Patagonia region of Argentina and Chile. Although the stratigraphic evolution of the MAB has been well documented in the Chilean sector (referred to as the Magallanes Basin), its northern terminus in southern Argentina (Austral Basin) is poorly constrained. We present new stratigraphic and geochronologic analyses of the early basin fill (Aptian–Turonian) from the Argentine sector (49–51°S) of the MAB to document spatial variability in stratigraphy and timing of deposition during the initial stages of basin evolution. The initiation of the retroarc foreland basin fill is marked by the transition from mudstone to coarse‐clastic deposition, which is characterised by the consistent presence of sandstone beds > ca. 20 cm thick interpreted to represent sediment gravity flows deposited in a submarine fan system. Depositional environments within the early fill of the basin range from lower to upper deep‐water fan settings as well as previously undocumented slope deposits. These facies are present as far north as El Chalten, Argentina (ca. 49°S), indicating that facies‐equivalent rocks can be traced along‐strike for at least 5 degrees of latitude, based on correlation with strata as far south as the Cordillera Darwin (ca. 54°S). Eight new U‐Pb zircon ages from ash beds reveal an overall southward younging trend in the initiation of coarse clastic deposition. Inferred depositional ages range from ca. 115 ± 1.9 Ma in the northernmost study area to not older than 92 ± 1 Ma and 89 ± 1.5 Ma in the central and southern sectors respectively. The apparent diachronous delivery of coarse detritus into the basin may reflect (1) gradual southward progradation of a deep‐water fan system from a northerly point source and/or (2) orogen‐parallel variations in the timing and magnitude of thrust‐belt deformation and erosion that provided more local sources for sediment delivery.  相似文献   

6.
《Basin Research》2018,30(1):75-96
The Xichang Basin in southeastern Tibet provides crucial information about formation and tectonic processes affecting the eastern Tibetan Plateau. To determine when and how the uplift developed, we conducted detailed studies of structures and obtained thermochronology data from the Xichang Basin and its periphery. The Xichang Basin is characterized by gentle deformation of the strata, segmented by an E‐vergent boundary thrust fault. Two stages of deformation, strike‐slip followed by an E‐W oriented shortening resulted in oblique shortening between the southeastern Tibetan Plateau and the Sichuan Basin. New apatite fission‐track data interpreted together with (U‐Th)/He data confirm a simple burial/heating and exhumation/cooling history across the Xichang Basin and its periphery. Subsidence and burial of the Xichang Basin peaked between 80–30 Ma, followed by mountain building with a protracted cooling starting at around 40–20 Ma, with rates of ca. 2.0–8.0 °C Myr−1 (i.e. 0.1–0.3 mm year−1). Our data indicate that the Xichang Basin has experienced ca. 2.5–5 km of exhumation, much more intensive than the ca. 1–2 km of exhumation inferred for the southwestern Sichuan Basin. Restored balanced cross‐sections of post‐Late‐Triassic strata along a ca. 250 km traverse indicate ca. 10–20% east‐west shortening strain (i.e. ca. 20–30 km) at the southeastern Tibetan Plateau during Cenozoic time. Study of crustal thickening and erosion supports a tectonic shortening mechanism to account for the uplift of the Xichang Basin on the southeastern Tibetan Plateau.  相似文献   

7.
《Basin Research》2018,30(3):544-563
Previous research demonstrates that large basins on the periphery of the northern edge of the Tibetan Plateau were partitioned during development of intrabasin mountain ranges. These topographic barriers segregated basins with respect to surface flow and atmospheric circulation, ponded sediments, and formed rain shadows. However, complex mixing between airmasses and nonsystematic isotope‐elevation lapse rates have hampered application of quantitative paleoaltimetry to determine the timing of development of critical topographic barriers. We address the timing and drivers for changes in surface connectivity and atmospheric circulation in the Linxia and Xunhua basins using a multidisciplinary approach incorporating detrital zircon geochronology, Monte Carlo inverse flexural modelling, and published stable isotope data. Disruption of surface flow between the two basins during exhumation of the Jishi Shan preceded development of topography sufficient to intercept moisture‐bearing airmasses. Detrital zircon data point to disruption of an eastward‐flowing axial fluvial network between 14.7 and 13.1 Ma, coincident with the onset of exhumation in the Jishi Shan. Flexural modelling suggests that by 13 Ma, the Jishi Shan had developed 0.3 ± 0.1 km of relief; sufficient to disrupt eastward‐flowing drainage networks but insufficient to intercept moisture‐bearing airmasses. Stable isotope data indicate that, although surface connections between the Xunhua and Linxia basins were broken, the two basins continued to be dominated by a common climate regime until 9.3 Ma. Subsequent reintegration of surface flow between the basins occurred between 9.3 and 7.6 Ma. Divergence in the stable isotope and depositional environment records between the two basins suggests that at 9.3 Ma the paleo‐Yellow River breached the growing Jishi Shan dam, and may have reintegrated surface flow between the two basins via erosion of the modern Yellow River gorge, which transects the Jishi Shan. The reintegration of the Xunhua and Linxia basins’ surface connection is confirmed by reintroduction of a Songpan‐Ganzi flysch sediment source by 7.6 Ma. Continued exhumation and uplift of the Jishi Shan developed 0.8 ± 0.2 km of relief by ca. 8 Ma capable of intercepting moisture‐bearing airmasses; isolating and increasing aridity in the Xunhua Basin while decreasing it in the Linxia Basin. Our findings point to protracted development of the modern ca. 1 km of relief in the Jishi Shan between 14 and ca. 4.5 Ma followed by attainment of a topographic equilibrium which persists into modern times.  相似文献   

8.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

9.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

10.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

11.
A broad array of new provenance and stable isotope data are presented from two magnetostratigraphically dated sections in the south‐eastern Issyk Kul basin of the Central Kyrgyz Tien Shan. The results presented here are discussed and interpreted for two plausible magnetostratigraphic age models. A combination of zircon U‐Pb provenance, paleocurrent and conglomerate clast count analyses is used to determine sediment provenance. This analysis reveals that the first coarse‐grained, syn‐tectonic sediments (Dzhety Oguz formation) were sourced from the nearby Terskey Range, supporting previous thermochronology‐based estimates of a ca. 25–20 Ma onset of deformation in the range. Climate variations are inferred using carbonate stable isotope (δ18O and δ13C) data from 53 samples collected in the two sections and are compared with the oxygen isotope compositions of modern water from 128 samples. Two key features are identified in the stable isotope data set derived from the sediments: (1) isotope values, in particular δ13C, decrease between ca. 26.0 and 23.6 or 25.6 and 21.0 Ma, and (2) the scatter of δ18O values increased significantly after ca. 22.6 or 16.9 Ma. The first feature is interpreted to reflect progressively wetter conditions. Because this feature slightly post‐dates the onset of deformation in the Terskey Range, we suggest that it has been caused by orographically enhanced precipitation, implying that surface uplift accompanied late Cenozoic deformation and rock uplift in the Terskey Range. The increased scatter could reflect variable moisture source or availability caused by global climate change following the onset of Miocene glaciations at ca. 22.6 Ma, or enhanced evaporation during the Mid‐Miocene climatic optimum at ca. 17–15 Ma.  相似文献   

12.
Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of ca. 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.  相似文献   

13.
The Otway Basin in the south of Victoria, Australia underwent three phases of deformation during breakup of the southern Australian margin. We assess the geometry and kinematics of faulting in the basin by analysing a 3‐D reflection seismic volume. Eight stratigraphic horizons and 24 SW‐dipping normal faults as well as subordinate antithetic faults were interpreted. This resulted in a high‐resolution geological 3‐D model (ca. 8 km × 7 km × 4 km depth) that we present as a supplementary 3‐D PDF (Data S1). We identified hard‐ and soft‐linking fault connections over the entire area, such as antithetic faults and relay ramps, respectively. Most major faults were continuously active from Early to Late Cretaceous, with two faults in the northern part of the study area active until at least the Oligocene. Allan maps of faults show tectonic activity continuously waned over this time period. Isopach maps of stratigraphic volumes quantify the amount of syn‐sedimentary movement that is characteristic of passive margins, such as the Otway Basin. We show that the faults possess strong corrugations (with amplitudes above the seismic resolution), which we illustrated by novel techniques, such as cylindricity and curvature. We argue that the corrugations are produced by sutures between sub‐vertical fault segments and this morphology was maintained during fault growth. Thus, they can be used to indicate the kinematics vector of the fault movement. This evidences, together with left‐stepping relay ramps, that 40% of the faults had a small component (up to 25°) of dextral oblique slip as well as normal (dip‐slip) movement.  相似文献   

14.
The Santa Rosa basin of northeastern Baja California is one of several transtensional basins that formed during Neogene oblique opening of the Gulf of California. The basin comprises Late Miocene to Pleistocene sedimentary and volcanic strata that define an asymmetric half‐graben above the Santa Rosa detachment, a low‐angle normal fault with ca. 4–5 km of SE‐directed displacement. Stratigraphic analysis reveals systematic basin‐scale facies variations both parallel and across the basin. The basin‐fill exhibits an overall fining‐upward cycle, from conglomerate and breccia at the base to alternating sandstone‐mudstone in the depocentre, which interfingers with the fault‐scarp facies of the detachment. Sediment dispersal was transverse‐dominated and occurred through coalescing alluvial fans from the immediate hanging wall and/or footwall of the detachment. Different stratigraphic sections reveal important lateral facies variations that correlate with major corrugations of the detachment fault. The latter represent extension‐parallel folds that formed largely in response to the ca. N‐S constrictional strain regime of the transtensional plate boundary. The upward vertical deflection associated with antiformal folding dampened subsidence in the northeastern Santa Rosa basin, and resulted in steep topographic gradients with a high influx of coarse conglomerate here. By contrast, the downward motion in the synform hinge resulted in increased subsidence, and led to a southwestward migration of the depocentre with time. Thus, the Santa Rosa basin represents a new type of transtensional rift basin in which oblique extension is partitioned between diffuse constriction and discrete normal faulting. 40Ar/39Ar geochronology of intercalated volcanic rocks suggests that transtensional deformation began during the Late Miocene, between 9.36 ± 0.14 Ma and 6.78 ± 0.12 Ma, and confirms previous results from low‐temperature thermochronology (Seiler et al., 2011). Two other volcanic units that appear to be part of a conformable syn‐rift sequence are, in fact, duplicates of pre‐rift volcanics and represent allochthonous, gravity‐driven slide blocks that originated from the hanging wall.  相似文献   

15.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

16.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

17.
Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin.  相似文献   

18.
Quaternary sea‐level cycles have caused dramatic depocentre shifts near the mouths of major rivers. The effects of these shifts on fault activity in passive margin settings is poorly known, as no studies have constrained passive margin fault throw‐rate variability over 103 to 105 year time scales. Here we present 11 mean throw rates for the Tepetate–Baton Rouge fault zone along the northern Gulf of Mexico coast in southern Louisiana. These data were obtained by optically stimulated luminescence dating over time scales spanning the last interglacial to the late Holocene. The mean throw rate is ca. 0.22 mm year?1 during the late Holocene, ca. 0.03 mm year?1 during the last glacial and at least 0.07 mm year?1 during the last interglacial. Throw rates averaged over the late Pleistocene to present are spatially uniform within our study area. The temporal variability in throw rates suggests that shifts of the Mississippi River depocentre relative to this fault zone, driven by Quaternary sea‐level cycles, may have imposed a significant control on fault activity. The late Holocene throw rate is at least in the order of magnitude smaller than the rates of land‐surface subsidence in the Mississippi Delta, indicating that this fault zone is not a dominant contributor to subsidence in this region.  相似文献   

19.
The Xunhua, Guide and Tongren intermontane basin system in the NE Tibetan Plateau, situated near the Xining basin to the N and the Linxia basin to the E, is bounded by thrust fault‐controlled ranges. These include to the N, the Riyue Shan, Laji Shan and Jishi Shan ranges, and to the S the northern West Qinling Shan (NWQ). An integrated study of the structural geology, sedimentology and provenance of the Cenozoic Xunhua and Guide basins provides a detailed record of the growth of the NE Tibetan Plateau since the early Eocene. The Xining Group (ca. 52–21 Ma) is interpreted as consisting of unified foreland basin deposits which were controlled by the bounding thrust belt of the NWQ. The Xunhua, Guide and Xining subbasins were interconnected prior to later uplift and damming by the Laji Shan and Jishi Shan ranges. Their sediment source, the NWQ, is constrained by strong unidirectional paleocurrent trends towards the N, a northward fining lithology, distinct and recognizable clast types and detrital zircon ages. Collectively, formation of this mountain–basin system indicates that the Tibetan Plateau expanded into the NWQ at a time roughly coinciding with Eocene to earliest Miocene continental collision between India and Eurasia. The Guide Group (ca. 21–1.8 Ma) is inferred to have been deposited in the separate Xunhua, Guide and Tongren broken foreland basins. Each basin was filled by locally sourced alluvial fans, braided streams and deltaic‐lacustrine systems. Structural, paleogeographic, paleocurrent and provenance data indicate that thrust faulting in the NWQ stepped northward to the Laji Shan from ca. 21 to 16 Ma. This northward shift was accompanied by E–W shortening related to nearly N–S‐striking thrust faulting in Jishi Shan after 11–13 Ma. A lower Pleistocene conglomerate (1.8–1.7 Ma) was deposited by a through‐flowing river system in the overfilled and connected Guide and Xunhua basins following the termination of thrust activity. All of the basin–mountain zones developed along the Tibetan Plateau's NE margin since Indian–Tibetan continental collision may have been driven by collision‐induced basal drag of old slab remnants in the manner of N‐dipping and flat‐slab subduction, and their subsequent sinking into the deep mantle.  相似文献   

20.
The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year?1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year?1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号