首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Geomorphological mapping of southern Skye indicates evidence for a single readvance of locally-nourished glaciers. These comprised a major icefield that occupied c. 155 km2 of the main mountain area, a small icefield c. 10 km2 in extent in the Kyleakin hills and ten corrie glaciers with a total area of c. 16 km2. The absence of Lateglacial pollen sites, shorelines and periglacial features within the limits of local glaciation implies a Loch Lomond Readvance age for this glacial event. The area-weighted mean equilibrium line altitude (ELA) of the reconstructed Loch Lomond Readvance glaciers (319 m) conforms with a regional eastwards rise in ELAs that indicates dominant westerly airstreams during the Loch Lomond Stadial. An easterly decline in ELAs across the former icefields is interpreted in terms of easterly transfer of snow across ice-sheds by westerly winds, though the altitudes of corrie glacier ELAs suggest that the dominant snow-bearing winds were southerlies. Calculations based on the area-weighted mean ELA for the major icefield (308 m) indicate a stadial mean July sea-level temperature of c. 6 °C. The anomalously low gradients of certain former icefield outlet glaciers are attributed to deformation of subglacial sediment, an effect that may vitiate the assumption of linear ablation/accumulation gradients in the calculation of former ELAs for reconstructed glaciers.  相似文献   

2.
The extent, basal conditions and retreat history of a Loch Lomond Stadial glacier are reconstructed based on detailed geomorphological and sedimentological assessment. We present new evidence from the vicinity of Coire Ardair that supports the former existence of a warm-based, locally-fed valley glacier, with probable cold-based ice on the surrounding plateau. This is broadly consistent with modelled creep-dominated flow in the upper catchment and sliding-dominated flow throughout much of the valley. A dense suite of moraines, primarily formed in ice-marginal environments, records a multi-phase recessional history: (1) active and oscillatory retreat; (2) a prolonged ice stillstand; (3) partial ice stagnation with occasional minor readvances; (4) increased oscillatory retreat with a substantial readvance event; and (5) rapid and uninterrupted retreat. We propose that a Coire Ardair glacier responded to sub-centennial scale climate fluctuations, possibly associated with the periodic delivery of warmer air masses to the region, rather than to a single, prominent shift in climate.  相似文献   

3.
The deglaciation of Skye at the close of the Loch Lomond Stadial is assessed on the basis of detailed geomorphological mapping and pollen-stratigraphic correlations. It is concluded that deglaciation proceeded in two distinct stages. The first was marked by numerous glacier stillstands and readvances, while uninterrupted retreat and local glacier stagnation occurred during the second and final stage. The pollen evidence indicates that the first stage was well advanced before the marked thermal improvement at the start of the Flandrian, and it is inferred that initial glacier retreat occurred in response to a decline in precipitation in the later part of the Loch Lomond Stadial. The first stage of glacier retreat continued into the early Flandrian, during which climatic amelioration was interrupted briefly. Final deglaciation appears to have occurred rapidly in response to sustained temperature increases. The collective evidence also indicates spatial variations in the timing of deglaciation, which appear to reflect differences in glacier morphology.  相似文献   

4.
The tongue-shaped mass of debris and associated ridges on the cirque floor below Craig Cerrig-gleisiad, Brecon Beacons National Park is important and controversial because it has been attributed to more than one glacier advance during the Late Devensian. A new origin is proposed involving landslide development from the collapse of part of the western headwall followed by a single phase of glacier development in the Loch Lomond Stadial (Younger Dryas), which reworked the landslide sediments. Evidence for this landslide, which provides useful criteria for differentiating moraines formed by small glaciers from landslides, lies in tension cracks, backward-tilted blocks and bedrock joints dipping out of the western headwall, together with lateral levées, upstanding termini and angular clasts with only occasional, indistinct striae on the tongue-shaped mass, which is interpreted as a flowslide. Glacier reworking of debris in the upper part of the Cwm Cerrig-gleisiad landslide is indicated by subparallel ridges rising to 20 m above the cirque floor containing abraded clasts (16-32% striated). This interpretation is supported by a comparison with the morphological and sedimentary characteristics of a neighbouring landslide at Fan Dringarth, where no glacier developed in the Loch Lomond Stadial. The existence of paraglacial landsliding has significant palaeoenvironmental implications leading to: (1) erroneously large estimates of equilibrium line depression ($Δ$ELA) in the Loch Lomond Stadial; (2) consequent underestimates of summer palaeotemperatures and/or overestimates of the contribution of wind-drifted snow to glacier accumulation; and (3) larger moraines than usual and overestimation of the efficacy of glacial erosion because of antecedent processes.  相似文献   

5.
Geomorphological mapping in the West Drumochter Hills provides evidence of a readvance of locally nourished glaciers during the Loch Lomond (Younger Dryas) Stade, in the form of an icefield 67.7 km2 in area drained by outlet glaciers. The icefield limits accord broadly with those proposed by Sissons (1980) but all geomorphic, stratigraphic and sedimentological evidence conflicts with a recent proposal that the landforms in the area reflect southwestwards retreat of the last ice sheet. Up‐valley continuity of recessional moraines indicates that the ice remained active and close to climatic equilibrium during the earlier stages of glacier retreat, consistent with slow warming following the coldest part of the stade. The pattern of equilibrium line altitudes (ELAs) across the icefield is consistent with transfer of snow by westerly and southerly winds. The ELA of the reconstructed icefield as a whole is 622–629 m, although this figure is likely to be lower than the regional (climatic) ELA because the icefield probably received additional snow blown from adjacent plateau surfaces and slopes. Inclusion of potential snow‐blow areas in the ELA calculation yields a value of 648–656 m; the climatic ELA is therefore likely to have lain between 622 and 656 m. Mean June to August temperature at the ELA, based on chironomid assemblages at two sites, falls within the range 4.0 ± 0.7°C. Empirical relationships between temperature and precipitation at modern glacier ELAs indicate that mean annual precipitation (MAP) at the ELA was 1977 ± 464 mm, statistically indistinguishable from modern values. Comparison with precipitation values calculated for the Isle of Mull on the west coast suggest that the precipitation gradient across the Central Highlands of Scotland was steeper during the Loch Lomond Stade than at present, probably as the result of efficient scavenging of precipitation from westerly airflows by the West Highland Icefield. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Despite a wealth of research on the patterns and timing of glaciation in Glen Roy over the last 150 years, glacial events within Glen Turret remain heavily debated. These debates centre on the extent and source of Loch Lomond Stadial (Younger Dryas) ice in Glen Turret, and the implications for the age and genesis of the Turret Fan. Here we present details of recent systematic geomorphological mapping of Glen Turret and the neighbouring valleys to the north and east. The geomorphological evidence recorded indicates a plateau icefield style of glaciation centred on the Carn Dearg plateau, of which the Turret Glacier was an outlet. A morphostratigraphical approach is used to identify a relative chronology of glacial events, and suggests that the Turret Fan may have formed prior to the Loch Lomond Stadial. A reconstruction of the Carn Dearg plateau icefield is presented, which was connected to the larger Monadhliath Icefield to the east. Equilibrium line altitudes for the outlet glaciers range from 560 ± 20 m to 646 ± 20 m and are comparable with those calculated for surrounding regions. This research suggests that the Turret Fan is predominantly an older feature that was deposited by a more extensive plateau ice-sourced Turret Glacier prior to the Loch Lomond Stadial, most likely during or immediately after deglaciation of the last ice sheet.  相似文献   

7.
Considerable uncertainty surrounds the timing of glacier advance and retreat during the Younger Dryas or Loch Lomond Stade (LLS) in the Scottish Highlands. Some studies favour ice advance until near the end of the stade (c. 11.7 ka), whereas others support the culmination of glacier advance in mid‐stade (c. 12.6–12.4 ka). Most published 10 Be exposure ages reported for boulders on moraines or deglacial sites post‐date the end of the LLS, and thus appear to favour the former view, but recalibration of 33 10 Be ages using a locally derived 10 Be production rate and assuming rock surface erosion rates of zero to 1 mm ka?1 produces exposure ages 130–980 years older than those originally reported. The recalibrated ages are filtered to exclude anomalous data, and then employed to generate aggregate probability density distributions for the timing of moraine deposition and deglaciation. The results suggest that the most probable age for the timing of the deposition of the sampled outermost moraines lies in the interval 12.4–12.1 ka or earlier. Deglacial ages obtained for sites inside Loch Lomond Stadial glacier limits imply that glaciers at some or all of the sampled sites were retreating prior to 12.1 ka. Use of aggregated data does not exclude the possibility of asynchronous glacier behaviour at different sites, but confirms that some glaciers reached their maximum limits and began to retreat several centuries before the rapid warming that terminated the LLS at 11.7–11.6 ka, consistent with the retrodictions of recent numerical modelling experiments and with geomorphological evidence for gradual oscillatory ice‐margin retreat under stadial conditions.  相似文献   

8.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   

9.
Detailed geomorphological mapping has revealed evidence for the development of plateau icefields in the central fells of the English Lake District during the Loch Lomond (Younger Dryas) Stadial (ca. 12.9–11.5 ka). The largest plateau icefield system, which covered an area of approximately 55 km2 (including outlet glaciers), was centred on High Raise. To the west, smaller plateau icefields developed on Grey Knotts/Brandreth and Dale Head, covering areas of 7 km2 and 3 km2 respectively. The geomorphological impact of these plateau icefields appears to have been minimal on the summits, where the survival of blockfields and other frost‐weathered debris (mostly peat‐covered) implies the existence of at least patches of protective, cold‐based ice. Ice‐moulded bedrock at some plateau edges, however, documents a transition to wet‐based, erosive conditions. Prominent moraine systems were produced by outlet glaciers, which descended into the surrounding valleys where their margins became sediment traps for supraglacial debris and inwash. In some valleys, ice‐marginal moraines record successive positions of outlet glaciers, which actively backwasted towards their plateau source. This interpretation differs from that of previous workers, who assumed an alpine style of glaciation, with reconstructed glaciers emanating from corries and valley heads. It is likely that plateau icefields were more common at this time in upland Britain than hitherto has been appreciated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Studies of the mass balance of modern glaciers have indicated that the equilibrium line altitude (ELA) is the most critical parameter in the link between glaciers and climate. Average accumulation on a glacier includes components derived from direct precipitation on the glacier surface as well as wind-drifting and avalanching of snow, and approximates closely to accumulation at the equilibrium line. Ablation is most usefully predicted by mean summer temperature and there is a close, non-linear relationship between accumulation and mean summer temperature at the equilibrium line. Following discussion of methods of reconstructing former glaciers and calculating their equilibrium line altitudes, the application of the above relationships to the Loch Lomond Readvance glaciers of Highland Britain is considered and an outline of the precipitation pattern and the mean summer temperature of the Loch Lomond Stadial is given.  相似文献   

11.
This paper systematically reviews the glacial geomorphological evidence of the Loch Lomond Stadial (LLS; Younger Dryas) glaciation in Britain (12.9–11.7 ka). The geomorphology of sub‐regions within Scotland, England and Wales is assessed, providing the most comprehensive synthesis of this evidence to date. The contrasting nature of the evidence at the local scale is reviewed and conceptual themes common to multiple sub‐regions are examined. Advancements in glaciological theory, mapping technologies, numerical modelling and dating have been applied unevenly to localities across Britain, inhibiting a holistic understanding of the extent and dynamics of the LLS glaciation at a regional scale. The quantity and quality of evidence is highly uneven, leading to uncertainties regarding the extent of glaciation and inhibiting detailed analysis of ice dynamics and chronology. Robust dates are relatively scarce, making it difficult to confidently identify the limits of LLS glaciers and assess their synchroneity. Numerical models have allowed the glacier–climate relationships of the LLS to be assessed but have, thus far, been unable to incorporate local conditions which influenced glaciation. Recommendations for future research are made that will allow refined reconstructions of the LLS in Britain and contribute to a more comprehensive understanding of glacier–climate interactions during the Younger Dryas.  相似文献   

12.
Geomorphological mapping has identified the former existence of five cirque glaciers that formed during the Loch Lomond Stadial in the western Pennines, northern England. Landforms in Mallerstang, which previously have been interpreted as moraine ridges, are shown to be better explained as large complex landslides. Reconstruction of these former glaciers has allowed the calculation of the former equilibrium line altitudes (ELA) by a number of different methods. Values for the ELA show a range across the area from 311 m to 608 m OD, but with low values (311 m and 428 m) for the two western glaciers. These are explained by the existence of large plateau areas adjacent to the former glaciers, which contributed additional mass to the glaciers by snowblow on to the glacier surfaces. Delimitation of the potential snowblow area for each glacier shows that it has a distinct orientation, with the western sector (225–315°) being statistically significant with the ELA indicating the importance of winds from this direction in determining the existence of these palaeoglaciers. The significance of snowblow for the generation of small glaciers in marginal areas means that such local factors must be investigated before regional firn line trends are determined in former glaciated areas.  相似文献   

13.
Multibeam sonar surveys in the past decade, augmented by single-beam data from the OLEX charting system, reveal landsystems on Atlantic Canadian shelves that are diagnostic of Late Wisconsinan ice-sheet dynamics. Four landsystems are described. (1) The Bay of Fundy landsystem comprises two contrasting sets of bedforms, and is interpreted as evidence of topographically controlled fast-flowing ice adjacent to slower-moving ice. (2) The German Bank landsystem off southwest Nova Scotia is comprised of glacially fluted terrain overprinted by De Geer moraines and arcuate recessional moraines. We infer that a flow of grounded glacial ice out of the Bay of Fundy was followed by steady retreat, punctuated by at least one major re-advance. (3) The Placentia Bay landsystem consists of a convergent field of streamlined landforms with superimposed De Geer moraines, overprinted in one area by flutings. We infer that this landsystem was formed in the onset zone of fast-flowing ice, and that overprinting was due to a re-advance of ice from offshore. (4) The south coast of Newfoundland landsystem, which includes arcuate, fjord-mouth moraines and a coast-parallel, fluted moraine, indicates strong topographic control on a retreating marine ice margin as it reached a fjord coastline. These submarine glacial landsystems are not inconsistent with a conceptual model showing Late Wisconsinan ice advance to shelf edges, rapid calving retreat along deepwater channels and slower retreat of ice margins grounded in shallow water. The re-advances documented two of the study areas have parallels in the Last British Ice Sheet, confirming that the reorganization of marine-based ice sheets, caused by calving in embayments, led to internally forced re-advances.  相似文献   

14.
Current understanding of the Younger Dryas (Loch Lomond Stadial) ice cap in Scotland is dominated by reconstructions derived solely from field evidence. We use an area in the western Scottish Highlands to evaluate three examples of this approach by comparing the proposed glacier reconstructions with new empirical data and the predictions of a high-resolution numerical model. Particular emphasis is placed on accurately determining the maximum surface altitude attained by the ice cap, dominant palaeo-iceflow directions and the style of ice-cap recession. By combining new geomorphological and sedimentological data with model predictions, we present a revised interpretation of the build-up and decay of Loch Lomond Stadial ice in the study area - one that suggests a maximum ice-surface altitude of c. 900 m a.s.l., east and southeastward iceflow and active recession of a dynamic margin. Good agreement between the new field-based interpretation and the predictions of the numerical model validates the latter and by implication extends confidence in its veracity beyond the study area.  相似文献   

15.
A detailed high‐resolution seismic stratigraphy, calibrated by core data and terrestrial geomorphological mapping, has been constructed for Loch Ainort, Isle of Skye. This study has provided a palaeoenvironmental history of the area as well as important corroborative evidence for the stepped deglaciation of the Loch Lomond Stadial ice‐field on Skye. The Ainort Glacier reworked pre‐Loch Lomond glacial deposits terminating in a grounded tidewater ice‐front potentially 800 m beyond the previously extrapolated limit. The first stage of deglaciation was characterised by the formation of De Geer moraines indicative of a period of interrupted retreat. The second phase, by contrast, produced hummocky relief with sporadic linear moraines suggesting periods of uninterrupted retreat with occasional stillstands/readvances. Paraglacial reworking of terrestrial slopes resulted in the deposition of thick, subaqueous, debris flows which graded into fluvioglacial dominated sediments and ultimately modern fjordic deposits. The identification of an initial period of active retreat punctuated by numerous readvances correlates directly with the terrestrial record. However, the offshore stratigraphy suggests that although the second phase was dominated by uninterrupted retreat, occasional stillstands/ readvances did occur. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
A wide variety of Late Devensian periglacial landforms developed on Scottish mountains both before ca. 13,000 BP and during the Loch Lomond Stadial of ca. 11,000-10,000 BP. Nearly all such features are now inactive. Late Devensian periglacial weathering produced three types of regolith mantle (openwork block deposits, sandy diamicts and silt-rich frost-susceptible diamicts), each of which supports a characteristic assemblage of relict landforms. On upper slopes these include large-scale sorted circles and stripes, earth hummocks and nonsorted relief stripes, sorted and nonsorted solifluction features, massive boulder sheets and lobes, and nivation benches. Talus, protalus ramparts, rock glaciers and alluvial fans also developed at the base of mountain slopes.The distribution of Late Devensian periglacial features on Scottish mountains is locally controlled by topography, the response of underlying rocks to periglacial weathering and the limits of former glaciers. Regional variations in the altitude of certain forms of Loch Lomond Stadial age (particularly protalus ramparts and rock glaciers) indicate a decrease in former snowfall eastwards across the Scottish Highlands and northwards from the Highland Boundary Fault. Several upland periglacial features are also diagnostic of former permafrost, and complement palaeotemperature reconstructions based on ice-wedge casts and the equilibrium firn line altitudes of stadial glaciers. These suggest that under stadial conditions mean January temperatures at 600 m and 1000 m on mountains in the Western Grampians must have been no higher than −20°C and −23°C respectively, and possibly several degrees lower.  相似文献   

17.
When viewed from the air, Scottish ‘hummocky moraine’ can be resolved into a series of linear ridges that resemble those found at the margins of actively retreating glaciers today. Recent work has supported the interpretation of these linear ridges as ice-marginal landforms and the authors believe that the majority of ‘hummocky moraine’ deposits can be interpreted in this way. Consequently the pattern of deglaciation can be established fairly precisely from the pattern of linear ridges. This approach is applied to the landforms of the northern part of the Loch Lomond Stadial ice-field in order to reconstruct the regional pattern of deglaciation. This leads to important inferences about the significance of topographic control during deglaciation and more importantly it provides fresh insight into the environment of the British Isles during the Loch Lomond Stadial.  相似文献   

18.
Geomorphological mapping of locally nourished glaciers was conducted in four glens in the southeastern Monadhliath Mountains, Scotland. Three glaciers are interpreted to be of Younger Dryas age based on geomorphological similarity to features in other Scottish upland areas known to have been glaciated during the Younger Dryas, and on comparison to adjacent ice‐free areas in the lower glens where landform‐sediment assemblages typically reflect peri/paraglacial readjustment during the stadial. Here we reconstruct Younger Dryas glacier termini based on moraine alignments and associated geomorphological and sedimentological evidence. An adjacent wide plateau area at high altitude may have permitted extensive ice accumulation, but no unequivocal geomorphological signature is evident. To establish upper glacier limits, a series of ice profiles are modelled. The results yield a range of realistic glacier configurations bracketed between two distinct scenarios: a valley glaciation with the glaciers' upper limit on the plateau edge, and a low‐domed icecap centred on the plateau with ice flowing radially into the lower glens. Reconstructed equilibrium‐line altitudes are 795 m a.s.l. for the valley‐glacier scenario and 894 m a.s.l. for the icecap scenario. Calculated mean ablation‐season temperatures at the ELA are 1.2°C and 0.4°C for the valley‐glacier and the icecap scenario, respectively, from which we infer mean annual precipitation rates between 323 and 520 mm a?1. Palaeoclimate results indicate a stadial climate in central Scotland 65–79% more arid than at present, comparable to that of western Norway for the stadial and to the present‐day Canadian Arctic.  相似文献   

19.
Examination of two radiocarbon-dated vibrocores taken from south of St Kilda at a water depth of about 155 m, a short distance within the maximum position of the Late Devensian (Dimlington Stadial) ice sheet, suggests that the St Kilda Basin became free of glacier ice after 15250 yr BP. Sedimentation in a shallow, low energy, high arctic, muddy environment continued until after 13500 yr BP. There followed a higher energy temperate episode during which water depths were roughly about 40 m: this is correlated with the latter part of the Windermere Interstadial and with the warmer interval known in shallow Scottish seas about or a little before 11 000 yr BP. The Loch Lomond (Younger Dryas) Stadial is marked in the vibrocores by the return of muddy sediments and a cold-water fauna. Relatively shallow water conditions seem to have persisted into the earliest Flandrian, when the water depth was still roughly 60 m, corresponding to a sea-level in the area 90–100 m below present. It is suggested that pack ice was widespread in the northeast Atlantic before the Windermere Interstadial and also during the Loch Lomond Stadial, when it transported shards of Icelandic volcanic ash into the St Kilda basin. Estimates of sea-surface temperature for the last part of the Windermere Interstadial are close to those derived from the deep-sea record for the same period.  相似文献   

20.
《Quaternary Science Reviews》2007,26(1-2):213-229
This paper reviews the contrasting behaviours of ice caps and icefields, defines a generic landsystem model that can effectively discriminate between them, and applies the model to landform-sediment assemblages in an area of western Scotland. Such a model is necessary, since many palaeoenvironmental inferences from formerly glaciated terrains are based on the geometry, extent and dynamics of reconstructed ice masses. The validity of these glacier reconstructions is dependent on the accurate initial interpretation of relict landforms and sediments, and their inter-relationships. A new landsystems model is presented here, in which individual geological and geomorphological elements are checked against a set of eight theoretical diagnostic criteria that characterize the style of former glaciation. When applied to a 1200 km2 area of the western Scottish Highlands, the landsystem tool predicts (1) an extensive Younger Dryas ice cap with a maximum surface elevation of 900 m above sea level, implying colder or wetter conditions than previously thought, and (2) the survival of an independent mountain icefield in part of the area during deglaciation. Glaciological theory, proxy palaeoenvironmental data and established glacier-climate-topography relationships support these predictions, thereby giving credibility to the landsystem methodology as a generic tool for palaeoglaciological reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号