首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   

2.
3.
Examination of organic sediments lying on top of and within moraine limits in three Cairngorm corrics gives a minimum moraine age. According to previous suggestions the moraines originate either from the 'Little Ice Age' of the 16th–19th centuries or the Loch Lomond Stadial of 10,800–10,300 B.P. Radiocarbon dates and biostratigraphy show that the sediments have been accumulating undisturbed in the corries for 6,000–9,000 radiocarbon years, thus invalidating the 'Little Ice Age' hypothesis. The last known glaciation is therefore the Loch Lomond Advance and hence the moraine ridges are likely to date from that time.  相似文献   

4.
Many glaciated valleys in Scotland contain distinctive, closely spaced ridges and mounds, which have been termed ‘hummocky moraine’. The ridges and mounds are widely interpreted as ice-marginal moraines, constructed during active retreat of mainly temperate glaciers. However, hummocky terrain can form by various processes in glacial environments, and it may relate to a range of contrasting glaciodynamic regimes. Thus, detailed geomorphological and sedimentological studies of hummocky surfaces in Scottish glaciated valleys are important for robust interpretations of former depositional environments and glacier dynamics. In this contribution, we examine irregularly shaped ridges and mounds that occur outside the limits of former Loch Lomond Readvance (≈ Younger Dryas; ~ 12.9–11.7 ka) glaciers in the Gaick, Central Scotland. These ridges and mounds are intimately associated with series of sinuous channels, and their planform shape mimics the form of the adjacent channels. Available exposures through ridges in one valley reveal that those particular ridges contain lacustrine, subglacial, and glaciofluvial sediments. The internal sedimentary architecture is not related to the surface morphology; thus, we interpret the irregularly shaped ridges and mounds as erosional remnants (or interfluves). Based on the forms and spatial arrangement of the associated channels, we suggest that the ridges and mounds were generated by a combination of ice-marginal and proglacial glaciofluvial incision of glaciogenic sediments. The evidence for glaciofluvial incision, rather than ice-marginal moraine formation, at pre-Loch Lomond Readvance glacier margins in the Gaick may reflect differences in glaciodynamic regimes and/or efficient debris delivery from the glacier margins to the glaciofluvial systems.  相似文献   

5.
The deglaciation of Skye at the close of the Loch Lomond Stadial is assessed on the basis of detailed geomorphological mapping and pollen-stratigraphic correlations. It is concluded that deglaciation proceeded in two distinct stages. The first was marked by numerous glacier stillstands and readvances, while uninterrupted retreat and local glacier stagnation occurred during the second and final stage. The pollen evidence indicates that the first stage was well advanced before the marked thermal improvement at the start of the Flandrian, and it is inferred that initial glacier retreat occurred in response to a decline in precipitation in the later part of the Loch Lomond Stadial. The first stage of glacier retreat continued into the early Flandrian, during which climatic amelioration was interrupted briefly. Final deglaciation appears to have occurred rapidly in response to sustained temperature increases. The collective evidence also indicates spatial variations in the timing of deglaciation, which appear to reflect differences in glacier morphology.  相似文献   

6.
From mapping and consideration of prominent drift ridges at Stockdale Head, western Lake District, northern England it is inferred that the ridges are the products of dissection of a glacigenic or soliflual drift sheet rather than landforms constructed at the margins of a Loch Lomond Stade (LLS) valley‐head glacier. This proposal has implications for the recognition of LLS glacier limits and, possibly, understanding the dearth of moraine ridges associated with Dimlington ice in Lake District valleys. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Glacial geomorphology relating to the Loch Lomond Stadial (Younger Dryas) in Britain is used to construct five glacial landsystem models. These landsystems lie on a continuum of increasing ice thickness and decreasing topographic control and typify the principal styles of glaciation during the stadial. The landsystems comprise: the cirque/niche glacier landsystem, the alpine icefield landsystem, the lowland piedmont lobe landsystem, the plateau icefield landsystem and the icecap landsystem. Geomorphological features representing the icecap landsystem are present only at the centre of the West Highland Glacier Complex, which was flanked primarily by satellite alpine and plateau icefields. The cirque/niche glacier landsystem was present predominantly in areas that experienced conditions only marginally favourable for glacier development at peripheral sites. Three styles of glacier retreat are recorded by the geomorphology: active, two‐phase and uninterrupted retreat. Of these, active retreat appears to be most widespread within the Loch Lomond Stadial limits. These retreat styles reflect a combination of climatic and topographic conditions, coupled with local factors influencing the preservation of landforms from which retreat dynamics can be inferred. Likewise, the distribution of landsystems was influenced by an interplay between topography and climate, with glacier formation being facilitated in locations where topographical conditions aided in the accumulation of snow. The pattern also supports the existence of previously recognized northward and eastward precipitation gradients across Britain during the stadial.  相似文献   

9.
Despite a wealth of research on the patterns and timing of glaciation in Glen Roy over the last 150 years, glacial events within Glen Turret remain heavily debated. These debates centre on the extent and source of Loch Lomond Stadial (Younger Dryas) ice in Glen Turret, and the implications for the age and genesis of the Turret Fan. Here we present details of recent systematic geomorphological mapping of Glen Turret and the neighbouring valleys to the north and east. The geomorphological evidence recorded indicates a plateau icefield style of glaciation centred on the Carn Dearg plateau, of which the Turret Glacier was an outlet. A morphostratigraphical approach is used to identify a relative chronology of glacial events, and suggests that the Turret Fan may have formed prior to the Loch Lomond Stadial. A reconstruction of the Carn Dearg plateau icefield is presented, which was connected to the larger Monadhliath Icefield to the east. Equilibrium line altitudes for the outlet glaciers range from 560 ± 20 m to 646 ± 20 m and are comparable with those calculated for surrounding regions. This research suggests that the Turret Fan is predominantly an older feature that was deposited by a more extensive plateau ice-sourced Turret Glacier prior to the Loch Lomond Stadial, most likely during or immediately after deglaciation of the last ice sheet.  相似文献   

10.
Offshore boreholes from the outer Firth of Clyde and from the Sea of the Hebrides passed through marine deposits of Holocene, Loch Lomond Stadial (LLS) and Windermere Interstadial (WI) age, but it is likely that older, probably Dimlington Stadial (DS) strata, now removed by erosion, were formerly present at the entrance to the Firth of Clyde. The late-glacial environment was one of very rapid deposition punctuated by erosive episodes. Reworking and redeposition led to the mixing of otherwise incompatible warm, shallow-water and cold, offshore faunas, particularly during a ‘warm’ event towards the end of the WI. The latter is correlated with Greenland Interstadial GI1a, but no evidence has been found for climatic ameliorations corresponding to GI1c and GI1e earlier in the Wl. A less cold interval at the end of the LLS may be coeval with climatic changes in Norway and the Shetland–Faroe Channel. Glacier ice disappeared from the outer Firth of Clyde before the close of the DS, and the Glasgow area was deglaciated across the DS/WI transition. The borehole evidence for the timing of deglaciation in the Sea of the Hebrides is inconclusive.  相似文献   

11.
We present 10 in situ cosmogenic exposure ages from two moraines on the Isle of Skye. The Strollamus medial moraine was deposited during deglaciation of the Devensian ice sheet and yields a mean exposure age from five samples of 14.3 ± 0.9 ka. The moraine age indicates that a significant ice mass existed on Skye at the time of a regional readvance recorded in Wester Ross, northwest Scotland. Taken at face value the ages suggest that deglaciation did not occur until well into Greenland Interstade 1. The Slapin moraine represents the local limit of the Loch Lomond Readvance (LLR) and yields a mean exposure age from five samples of 11.5 ± 0.7 ka, which is consistent with deposition relating to the LLR. These ages suggest that the maximum extent may have been reached late in the stadial and that some glaciers may have remained active until after the climatic amelioration that marks its end. This scenario is considered unlikely given the nature of the climate during this period, which leads us to call for a locally calibrated production rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
《Sedimentary Geology》1999,123(3-4):163-174
Over large areas of the western interior plains of North America, hummocky moraine (HM) formed at the margins of Laurentide Ice Sheet (LIS) lobes that flowed upslope against topographic highs. Current depositional models argue that HM was deposited supraglacially from stagnant debris-rich ice (`disintegration moraine'). Across southern Alberta, Canada, map and outcrop data show that HM is composed of fine-grained till as much as 25 m thick containing rafts of soft, glaciotectonized bedrock and sediment. Chaotic, non-oriented HM commonly passes downslope into weakly-oriented hummocks (`washboard moraine') that are transitional to drumlins in topographic lows; the same subsurface stratigraphy and till facies is present throughout. These landforms, and others such as doughnut-like `rim ridges', flat-topped `moraine plateaux' and linear disintegration ridges, are identified as belonging to subglacially-deposited soft-bed terrain. This terrain is the record of ice lobes moving over deformation till derived from weakly-lithified, bentonite-rich shale. Drumlins record continued active ice flow in topographic lows during deglaciation whereas HM was produced below the outer stagnant margins of ice lobes by gravitational loading (`pressing') of remnant dead ice blocks into wet, plastic till. Intervening zones of washboard moraine mark the former boundary of active and stagnant ice and show `hybrid' drumlins whose streamlined form has been altered by subglacial pressing (`humdrums') below dead ice. The presence of hummocky moraine over a very large area of interior North America provides additional support for glaciological models of a soft-bedded Laurentide Ice Sheet.  相似文献   

13.
The present day maritime climate of Scotland is primarily characterized by strong winds which, in very exposed sites, lead to modern windpolish of rock surfaces. The widespread existence of in situ relict windpolished boulders and bedrock surfaces in Scotland has enabled a reconstruction of prevalent Late Devensian (Late Weichselian) including Loch Lomond Stadial (Younger Dryas) palaeo-wind directions. Previous reconstructions of palaeo-wind directions have been indirect and based mainly on the distribution of aeolian sediments and former glaciers. Observations of relict windpolished microforms and their distribution on boulders and bedrock outcrops on various rock types at 55 sites in different parts of the Scottish Highlands have been used to establish a palaeo-wind map for the area. The reconstruction indicates two sets of dominating wind directions, one between SE and SW and one between NW and N. The maximum age of the windpolish is 16-10 cal. ka BP, but most of it presumably developed during the Loch Lomond Stadial 13-12 cal. ka BP, inferred from the distribution of windpolish sites in relation to the deglaciation chronology and establishment of vegetation.  相似文献   

14.
The terms assigned to Finnish morainic landforms were frequently originally established for areas where the glacial environment was different from that in Finland. The terms therefore are not always applicable to the conditions found here and there is a need for some revision. Some new proposals are presented in this paper. The term cover moraine could be adopted to refer to a vencer of till, which has a rather flat surface, devoid of transverse or lineal elements. The term g round moraine would then only he applied when the relief is independent of the underlying bedrock topography. As regards the term hummocky moraine , it would he advantageous to subdivide it into at lcast hummocky disintegration moraine, thehummocky squeezed-up moraine, and the hummocky active-ice moraine . Today the term is of little value since it is commonly used to describe forms with varied origins.
Landforms tend to form groups of closely related genetic assenihlagcs or of complexes where the members are areally related, but often genetically different. It is more logical to handle them as an association of forms, rather than to split the group artificially into a number of separate units. A gradational series of assemblages from a fluting assemblage into a drumlin assemblage and further into a hummocky active-ice assemblage characterizes the Koillisinaa reference area. A bimodal flow system prevailed during the formation of the landforins. Spiral flow predominates in the formation of flutings and linear drumlins, ahercas up and down movement predominates in the formation of the transverse ridges of Kogen moraine. Between these end members coinhinations of these flow patterns occur.  相似文献   

15.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

16.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

17.
A wide variety of Late Devensian periglacial landforms developed on Scottish mountains both before ca. 13,000 BP and during the Loch Lomond Stadial of ca. 11,000-10,000 BP. Nearly all such features are now inactive. Late Devensian periglacial weathering produced three types of regolith mantle (openwork block deposits, sandy diamicts and silt-rich frost-susceptible diamicts), each of which supports a characteristic assemblage of relict landforms. On upper slopes these include large-scale sorted circles and stripes, earth hummocks and nonsorted relief stripes, sorted and nonsorted solifluction features, massive boulder sheets and lobes, and nivation benches. Talus, protalus ramparts, rock glaciers and alluvial fans also developed at the base of mountain slopes.The distribution of Late Devensian periglacial features on Scottish mountains is locally controlled by topography, the response of underlying rocks to periglacial weathering and the limits of former glaciers. Regional variations in the altitude of certain forms of Loch Lomond Stadial age (particularly protalus ramparts and rock glaciers) indicate a decrease in former snowfall eastwards across the Scottish Highlands and northwards from the Highland Boundary Fault. Several upland periglacial features are also diagnostic of former permafrost, and complement palaeotemperature reconstructions based on ice-wedge casts and the equilibrium firn line altitudes of stadial glaciers. These suggest that under stadial conditions mean January temperatures at 600 m and 1000 m on mountains in the Western Grampians must have been no higher than −20°C and −23°C respectively, and possibly several degrees lower.  相似文献   

18.
The glacial geomorphology of Teesdale and the North Pennines uplands is analysed in order to decipher: a) the operation of easterly flowing palaeo-ice streams in the British-Irish Ice Sheet; and b) the style of regional deglaciation. Six landform categories are: i) bedrock controlled features, including glacitectonic bedrock megablocks or ‘rubble moraine’; ii) discrete mounds and hills, often of unknown composition, interpreted as weakly streamlined moraines and potential ‘rubble moraine’; iii) non-streamlined drift mounds and ridges, representing lateral, frontal and inter-ice stream/interlobate moraines; iv) streamlined landforms, including drumlins of various elongation ratios and bedrock controlled lineations; v) glacifluvial outwash and depositional ridges; and vi) relict channels and valleys, related to glacial meltwater incision or meltwater re-occupation of preglacial fluvial features. Multiple tills in valley-floor drumlin exposures indicate that the subglacial bedform record is a blend of flow directions typical of areas of discontinuous till cover and extensive bedrock erosional landforms. Arcuate assemblages of partially streamlined drift mounds are likely to be glacially overridden latero-frontal moraines related to phases of “average glacial conditions” (palimpsests). Deglacial oscillations of a glacier lobe in mid-Teesdale are marked by five inset assemblages of moraines and associated drift and meltwater channels, named the Glacial Lake Eggleshope, Mill Hill, Gueswick, Hayberries and Lonton stages. The Lonton stage moraines are thought to be coeval with bedrock-cored moraines in the central Stainmore Gap and likely record the temporary development of cold-based or polythermal ice conditions around the margins of a plateau-based icefield during the Scottish Readvance.  相似文献   

19.
Examination of two radiocarbon-dated vibrocores taken from south of St Kilda at a water depth of about 155 m, a short distance within the maximum position of the Late Devensian (Dimlington Stadial) ice sheet, suggests that the St Kilda Basin became free of glacier ice after 15250 yr BP. Sedimentation in a shallow, low energy, high arctic, muddy environment continued until after 13500 yr BP. There followed a higher energy temperate episode during which water depths were roughly about 40 m: this is correlated with the latter part of the Windermere Interstadial and with the warmer interval known in shallow Scottish seas about or a little before 11 000 yr BP. The Loch Lomond (Younger Dryas) Stadial is marked in the vibrocores by the return of muddy sediments and a cold-water fauna. Relatively shallow water conditions seem to have persisted into the earliest Flandrian, when the water depth was still roughly 60 m, corresponding to a sea-level in the area 90–100 m below present. It is suggested that pack ice was widespread in the northeast Atlantic before the Windermere Interstadial and also during the Loch Lomond Stadial, when it transported shards of Icelandic volcanic ash into the St Kilda basin. Estimates of sea-surface temperature for the last part of the Windermere Interstadial are close to those derived from the deep-sea record for the same period.  相似文献   

20.
Considerable uncertainty surrounds the timing of glacier advance and retreat during the Younger Dryas or Loch Lomond Stade (LLS) in the Scottish Highlands. Some studies favour ice advance until near the end of the stade (c. 11.7 ka), whereas others support the culmination of glacier advance in mid‐stade (c. 12.6–12.4 ka). Most published 10 Be exposure ages reported for boulders on moraines or deglacial sites post‐date the end of the LLS, and thus appear to favour the former view, but recalibration of 33 10 Be ages using a locally derived 10 Be production rate and assuming rock surface erosion rates of zero to 1 mm ka?1 produces exposure ages 130–980 years older than those originally reported. The recalibrated ages are filtered to exclude anomalous data, and then employed to generate aggregate probability density distributions for the timing of moraine deposition and deglaciation. The results suggest that the most probable age for the timing of the deposition of the sampled outermost moraines lies in the interval 12.4–12.1 ka or earlier. Deglacial ages obtained for sites inside Loch Lomond Stadial glacier limits imply that glaciers at some or all of the sampled sites were retreating prior to 12.1 ka. Use of aggregated data does not exclude the possibility of asynchronous glacier behaviour at different sites, but confirms that some glaciers reached their maximum limits and began to retreat several centuries before the rapid warming that terminated the LLS at 11.7–11.6 ka, consistent with the retrodictions of recent numerical modelling experiments and with geomorphological evidence for gradual oscillatory ice‐margin retreat under stadial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号