首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dimensions of shales and other geologic bodies that affect fluid flow through reservoirs and aquifers are often estimated from analogous deposits exposed in outcrops. Shale lengths observed in outcrops are biased because the finite length of outcrops truncates longer shales and long shales tend to be overrepresented in the sample. Shale length distributions can be modeled using an Erlangian probability density function based on termination frequency. Termination frequency can be calculated from outcrop observations even if the shales are incompletely exposed. Termination frequency is unbiased regardless of underlying shale length distribution and outcrop size and shape. Complex length distributions can be represented by a weighted sum of Erlangian models, each with a distinct termination frequency. The proportions and termination frequencies of the component models can be estimated using Bayes' theorem. Subsamples of the outcrop area can be analyzed to quantify spatial trends in termination frequency and thus shale length. These methods can be applied to estimate length distributions of any geologic object exposed in outcrops or other spatially limited samples. In many cases estimated termination frequency is normally distributed, and its variance can be estimated using closed-form expressions. Shale length distributions for the Frewens Sandstone were modeled using one- and two-component Erlangian probability density functions. The Frewens Sandstone is a tide-influenced deltaic sandstone body within the Cretaceous-age Frontier Formation, exposed in central Wyoming, USA. Length observations and Erlangian models agree reasonably well. Because the models correct for the effects of shale truncation in limited outcrop exposures, predicted means and proportions of long shales are substantially greater than observed values. There is a vertical trend and pronounced vertical cyclicity in termination frequency, indicating that shales become shorter upward and intervals of longer and shorter shales alternate. Along strike, termination frequency decreases away from the sandstone-body axis, reflecting greater preserved shale lengths toward sandstone-body margins. No correlation was observed between distance along dip and termination frequency. Termination frequencies and histograms of shale length for adjacent, perpendicular walls are similar, indicating that there is no anisotropy in shale length.  相似文献   

2.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   

3.
The Permian Barakar Formation in the Mohpani coalfield, Satpura Gondwana basin, is composed of three broad lithologies that occur repetitively and are iterdigitated: (1) several metres thick coarse- to medium-grained sandstone bodies with scoured bases, (2) 5-20 m thick medium- to fine-grained sandstone bodies and (3) 5-20 m thick mudstone-dominated packages with variable proportions of centimetre- to decimetre-scale, fine- to medium-grained sandstone, carbonaceous shale and coal. The Barakar strata were previously interpreted as deposits of braided rivers and associated inter-channel flood basin in a continental setting. However, this study recognizes signatures of tidal current from the mudstone-dominated packages implying marine influence during Barakar sedimentation.

The mudstone-dominated sediment bodies are the focus of this paper and comprise of three lithofacies that bear imprints of tidal processes during Barakar sedimentation: (1) heterolith, (2) sandstone, and (3) coal-carbonaceous shale, which alternate with one another within individual bodies. The heterolithic facies show interlayering of sandstone and claystone resembling flaser, wavy and lenticular bedding, as well as pinstripe stratification. Successive sandstone-mudstone couplets indicate periodic waxing and waning of flows. Within individual heterolithic packages, the sandstone:claystone ratio along with the bedding style, varies cyclically upwards giving rise to alternate sandstone-dominated and claystone-dominated intervals suggesting tidal velocity fluctuation reflective of spring-neap lunar cycle. Thickness plots of successive sand-mud couplets also reveal cyclic variation with a conspicuous periodicity of around 12 couplets per cycle, which corroborates the spring-neap-spring (or neap-spring-neap) lunar cycle. Presence of abundant desiccation cracks indicates periodic emergence and points towards an intertidal setting. The sandstone facies is characterized by a variety of wave-generated features such as bundled and chevron upbuilding of lamina, bi-directional foreset orientations, offshooting and draping laminae, scour-and-drape feature, swollen lens-like geometries suggesting their emplacement under storm-induced combined-flow on the tidal-flat. The coal-carbonaceous shale facies represent supratidal marsh environment.  相似文献   


4.
The upper portion of the Virgelle Member (Upper Cretaceous Milk River Formation) at Writing-on-Stone Provincial Park of southern Alberta preserves evidence of tidal processes along an otherwise wave-dominated, progradational shoreline in the Cretaceous Interior Seaway of North America. The upper Virgelle Member is underlain by offshore transition to lower shoreface deposits of the Telegraph Creek Member and the lower Virgelle Member, respectively, and is overlain by the non-marine shales and sandstones of the Deadhorse Coulee Member. The sediments of the upper Virgelle Member were deposited along a prograding shoreline and are interpreted here as those of a tidal-inlet complex. Most inlet sections consist of an erosional base overlain by a shale-pebble conglomerate, followed by cross-bedded sandstones which become finer-grained and decrease in scale upwards. Indicators of tidal processes include palaeocurrent distributions, mud couplets, tidal bundles, re-activation surfaces and herringbone cross-beds. The sequence through the tidal-inlet complex can be differentiated, according to prevalent palaeoflow directions and sedimentary structures, as ebb-dominated, flood-dominated, or mixed-tidal influence. Ebb-dominated sections commonly contain lateral accretion surfaces whereas flood-dominated sections contain tidal-ramp deposits. Back-barrier lagoon deposits are dominated by sandstones of an extensive flood-tidal delta with only thin shales preserved locally at the top of the inlet complex. Deposits of ebb-tidal deltas are absent, presumably due to the effective sediment dispersal by waves and wave-induced longshore currents acting on the regionally wave-dominated shoreline.  相似文献   

5.
阮伟  黄洁 《沉积学报》2010,28(1):118-127
以位于西班牙东北部的比利牛斯前陆盆地(Pyrenean Foreland Basin)南部的Roda砂岩组三段为对象,研究潮流沙脊、沙波的内部结构特征。主要的沉积结构为大型楔状、板状交错层理,局部发育大型槽状交错层理,平行层理和小型波纹层理等。垂向上,板状交错层理呈向上变粗变厚的趋势。潮汐束厚度周期性变化,复活面众多,双泥层不发育,局部可见鱼骨状交错层理。交错层理底部生物扰动强,内部较弱,贝壳碎屑常见,泥粒在交错层理底部普遍,古水流方向多变但主要以向西方向为主,主流方向与三角洲的前积方向呈锐角至平行关系,指示潮流沙脊和沙波共存。  相似文献   

6.
Shelf ridges are sedimentary bodies formed on the continental shelf due to transgressive reworking (tidal or storm) of lowstand deposits. Common on modern shelves, they are under‐represented in the geological record due to a lack of recognition criteria and facies model. This article proposes a new facies and architectural model for shelf ridges, linked to their inception–evolution–abandonment cycle and the process regime of the basin. The model is mainly based on new outcrop data and interpretations from three sandstone bodies of the Almond Formation, an overall transgressive interval during the infill of the Campanian Western Interior Seaway. Building from the case study, and ancient and modern examples, six characteristics are proposed for the recognition of ancient shelf ridges. Shelf ridges: (i) are encased between thick marine mudstone intervals; (ii) have a basal unconformity that erodes into marine muds or into the remnants of a previous shoreline; (iii) have a non‐erosional upper boundary that transitions into marine muds; (iv) are characterized by clean and well‐sorted sandstones, often cross‐bedded; (v) contain fully marine ichnofauna; and (vi) present compound architectures with large accretion surfaces and lower order structures. Although shelf ridges have been described in previous studies as generated exclusively by either tidal or storm currents, it is clear, from modern examples and the case study, that these two processes can be recorded and preserved in a single shelf ridge. The stratigraphy of these sandstone bodies is therefore much more complex than previously recognized, bearing the signature of changing tidal and storm intensity through time. Because they are developed during transgressions, shelf ridges are commonly subject to strong changes in process regime as sea‐level changes can easily affect the oceanographic conditions and the morphology of the basin. For this reason, shelf ridges can provide the best record of shelf process variability during transgressions.  相似文献   

7.
Five coarsening upward shallow marine sandstone sequences (2–10 m thick), are described from the late Precambrian of North Norway, where they occur in a laterally continuous and tectonically undeformed outcrop. The sequences consist of five facies with distinct assemblages of sedimentary structures and palaeocurrent patterns. Each facies is the product of alternate phases of sedimentation during relatively high- and low-energy periods. Facies 1 to 4 are interpreted as representing prograding, subtidal sand bars. Sand bar progradation occurred during the highest energy periods when unidirectional currents flowed to the northwest, depositing trough cross-bedded sandstones (facies 3 and 4) on the bar crests and flanks, and sheet sandstone beds (facies 1 and 2) in the offshore environments. Weaker northwesterly flowing currents continued during moderate energy fair weather periods. Low energy fair weather periods were dominated by wave processes, which formed largescale, low-angle, westerly inclined surfaces on the bar flanks (facies 4) and wave rippled sandstone beds (facies 2) and flat laminated siltstone layers (facies 1) in the offshore environments. One sand bar was dissected by channels and infilled by tabular cross-bedded sandstones (facies 5). Bipolar palaeocurrent evidence, with two modes separated into two laterally equivalent channel systems, suggests deposition by tidal currents in mutually evasive ebb and flood channels. The inferred processes of these sand bars are compared with those associated with modern storm-generated and tidal current generated linear sand ridges. Both are influenced by the interaction of relatively low and high energy conditions. The presence of the tidal channel facies, however, combined with the inferred strong bottom current regime, is more analogous to a tidal current hydraulic regime.  相似文献   

8.
《Precambrian Research》2006,144(3-4):167-198
The Huqf Supergroup of Oman contains an excellently exposed succession from the presumed Marinoan-age Fiq glaciation (ca. 635 Ma) to the Precambrian–Cambrian boundary (542 Ma). Within this time interval, two major siliciclastic-to-carbonate cycles are present, starting with the transgression of basin margins following the deposition of the glacigenic, probably rift-related Fiq Member. The dominantly siliciclastic portion of the first cycle is termed the Masirah Bay Formation. In the Huqf region of east-central Oman, two quartz-arenitic sandstone bodies crop out, below the transition into the overlying Khufai Formation carbonates. In the Jabal Akhdar of northern Oman, only deep marine shales and siltstones are found.The Masirah Bay Formation in the Huqf area is divided into a number of members with constituent units containing distinctive facies assemblages. In Member 1, wave-rippled shoreface deposits are overlain by trough cross-stratified, coarse-grained sandstones deposited in proximal tidal sandsheets or estuarine tidal shoals. Member 2 represents essentially a repeat of this coarsening- and shallowing-up trend via a basin-wide flooding event. A second major flooding surface is overlain by the lower shoreface to offshore sedimentary rocks of Member 3, which pass gradationally upwards into the distal carbonate ramp of the Khufai Formation. The two major progradational cycles can be identified in nearby subsurface well penetrations such as Masirah-1 (SMP-1).The tidal sandstones of the Masirah Bay Formation were deposited as regressive-transgressive pulses in a longer term transgressive stratigraphic trend associated with both the demise of continental glaciation and the end of active extensional tectonics. As basin margins were flooded, compositionally and texturally mature but coarse-grained quartzose sand was swept by currents into tidal sandsheets and estuary-fills along a broad littoral margin situated in the eastern fringe of the study area. The development of meso-macrotidal conditions over extensive sandy shelves and coastlines appears to be a common but unexplained feature of the Ediacaran and Early Cambrian interval.  相似文献   

9.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

10.
The Moodies Group in the Dycedale Syncline, Barberton Greenstone Belt consists of a 100–130 m-thick upward-fining succession that exhibits a transition from fluvial to tide-modified sedimentation. A basal, 10–30 m-thick conglomerate–sandstone interval of alluvial origin is overlain by stacked upward-fining, decimeter- to meter-scale cycles within which three facies are recognized: 1) conglomerate lag; 2) cross-bedded sandstone; and 3) interlaminated sandstone–siltstone and mudstone. Within the cycles, the abundance of mudstone drapes increases upwards. Structureless conglomerates and cross-beds lacking mudstone drapes record braided-alluvial processes. In contrast, cross-beds with mudstone drapes and interlaminated sandstone–siltstone and mudstone are products of flows modified by various tidal beats. Sand and/or silt transport took place during the ebb and flood stages and mudstone accumulated during slack water phases. Alternating thick–thin laminations reflect dominant and subordinate, twice-daily tides. Thicker groupings of foresets and thicker intervals of vertically stacked sandstone–siltstone and mudstone laminations are interpreted as spring tide deposits whereas thinner groupings of foresets and thinner laminations record neap tides. Desiccated mudstone drapes on foresets indicate that bedforms rarely were locally exposed during some portion of the tidal cycle. Abundant exposure structures in the interlaminated sandstone–siltstone and mudstone facies indicate that the cycles are upward shoaling. The stacked upward-fining cycles are attributed to alternating subaerial exposure and fluvial influx followed by marine inundation, probably related to absolute sea level fluctuations. Lack of high-order vegetation on the Archean landscape promoted rapid lateral migration or avulsion of tidally influenced fluvial channels.

The association of facies within the 100–130 m-thick upward-fining succession is comparable to Holocene and ancient paleovalley fills characterized by basal alluvial gradational upwards into estuarine facies. However, in the absence of vegetation, the land–ocean interface in the Archean probably consisted of laterally extensive fan or braid deltas rather than point sources of sediment characteristic of most modern rivers. The abrupt up-section change from syntectonic, high-energy, alluvial–fluvial flash flood deposits to tide-influenced sedimentation implies a proximal source that provided sediment to a shoreline influenced by strong tidal action. Possible Holocene analogues are orogenic settings such as the Canterbury Plains of New Zealand, the Indo-Gangetic Plains of India and strike-slip settings such as the Gulf of Aqaba but all three examples lack a direct transition to tidally influenced sedimentation.  相似文献   


11.
The Bengal Basin, in the north-eastern part of the Indian subcontinent, contains a thick (± 22 km) early Cretaceous-Holocene sedimentary succession. The Neogene succession in the Sylhet Trough of the basin reaches a thickness of more than 6 km of which the Surma Group contains important sandstone reservoirs. Lithologically, the group consists of a succession of alternating shales, siltstones, sandy shales and sandstones, with minor conglomerates. This research work is a sedimentological analysis of the subsurface Neogene succession encountered in the petroleum exploration wells in the Sylhet Trough of the Bengal Basin. Detailed lithologic logs of the cores, based on considering texture and sedimentary structure, permit a subdivision into eight lithofacies, e.g., a shale-dominated facies, interbedded fine sandstones and mudstones, ripple-laminated sandstones, parallel-laminated sandstones, massive sandstones, cross-bedded sandstones, cross-bedded sandstones with pebble/granule lag and conglomerates. Characteristic sedimentary structures of the Surma Group, such as flaser-, wavy- and lenticular-bedding, bipolarity of ripple cross-stratification, evenly laminated sand/silt-streaked shales, reactivation surfaces within cross-bedded sandstone sets, mud-drapes on foreset laminae and herringbone cross-stratification as well as small-scale vertical sequences (several fining-upward cycles) are diagnostic for tidal influence. On the basis of the lithofacies associations and prograding character of the deposits revealed from the electrofacies associations, the Surma Group sediments have been interpreted as representing deposits of tide-dominated deltaic depositional setting.  相似文献   

12.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   

13.
The Mesoproterozoic Lower Tombador Formation is formed of shallow braided fluvial, unconfined to poorly-channelized ephemeral sheetfloods, sand-rich floodplain, tide-dominated estuarine, and shallow marine sediments. Lowstand braided fluvial deposits are characterized by a high degree of channel amalgamation interbedded with ephemeral, intermediate sheetflood sandstones. Sand-rich floodplain sediments consist of intervals formed by distal sheetflood deposits interbedded with thin layers of eolian sandstones. Tide-dominated estuarine successions are formed of tide-influenced sand-bed braided fluvial, tidal channel, tidal sand flat and tidal bars. Shallow marine intervals are composed of heterolithic strata and tidal sand bars. Seismic scale cliffs photomosaics calibrated with vertical sections indicate high lateral continuity of sheet-like depositional geometry for fluvial–estuarine successions. These geometric characteristics associated with no evidence of incised-valley features nor significant fluvial scouring suggest that the Lower Tombador Formation registers deposition of unincised fluvial and tide-dominated systems. Such a scenario is a natural response of the interplay between sedimentation and fluctuations of relative sea level on the gentle margins of a sag basin. This case study indicates that fluvial–estuarine successions exhibit the same facies distributions, irrespective of being related to unincised or incised-valley systems. Moreover, this case study can serve as a starting point to better understand the patterns of sedimentation for Precambrian basins formed in similar tectonic settings.  相似文献   

14.
Preferred facies trends in ancient shallow-marine sediments have been determined by Markov-chain and substitutability analyses of detailed sections measured in Lower Cambrian outcrops in the Southern Canadian Rocky Mountains (St Piran Formation, 600 m of vertical section; Fort Mountain Formation, 500 m of vertical section), and in a Cretaceous subsurface reservoir in south-central Alberta (Viking Formation in the Garrington Field: 69 cores). Those sections with more defined cycles are interpreted to result from progradation of shelf-ridge sands and gravels; examples with less defined order originated as inter-ridge deposits, in zones with complex palaeoflows and in areas of subdued palaeotopographic relief. The highest degree of facies organization (> 80% significant facies transitions) occurs in the Cretaceous Viking Formation sandstone and conglomerate ridges, interpreted to have had abundant sediment supply, water depths between fair- and storm-weather wave-base, and a strong littoral current system. A moderate degree of facies organization (70% significant facies transitions) occurs in the inter-ridge deposits of the Cambrian Fort Mountain Formation, interpreted to have had a variable sediment supply, water depths above storm-weather wavebase, and a variable, oscillating tidal current system. A poor degree of facies organization (< 45% significant facies transitions) occur in the ridge deposits of the Cambrian Fort Mountain and St Piran formations and in the inter-ridge deposits of the Cambrian St Piran and Cretaceous Viking formations. This facies disorganization occurs in sites where there was continuous and rapid subsidence (Cambrian) or in areas of subdued seafloor relief with complex current systems (Cretaceous). The pattern of facies relationships also varies. Relatively short linear patterns occur in all of the shelf-ridge deposits. This contrasts with the inter-ridge deposits in which there are long linear patterns or complex ring structures, interpreted to result from complex palaeoflow patterns in areas of subdued seafloor topography. Various statistical techniques (including Markov-chain and substitutability analyses) can aid the interpretation of very complex lithological successions, as shown by the shelf sandstones and conglomerates examined in this study.  相似文献   

15.
东濮凹陷沙三段的风暴沉积   总被引:11,自引:3,他引:11  
东濮凹陷下第三系沙三段发育风暴沉积,主要特征有:(1)具重力流沉积特征的变形构造;(2)反映风暴作用的丘状交错层理、冲刷-充填构造(渠模)、浪成沙纹层理、和震荡波痕;(3)与风浪作用相关的生物活动,包括潜穴、钻孔和生物逃逸现象;(4)可与海相风暴岩对比的“似鲍马层序”以及(5)多变的砂层顶面形态。根据风暴砂层的性质,可将风暴岩系划分为三个微相:(1)水道充填沉积;(2)漫溢沉积微相;(3)末稍沉积微相。  相似文献   

16.
塔里木盆地西北地区苏盖特布拉克组发育一套潮坪相沉积,是该层系油气勘探的主要目标。基于什艾日克剖面、奇格布拉克剖面、肖尔布拉克剖面的地质测量,采用薄片鉴定、阴极发光、扫描电镜、流体包裹体测温及黏土矿物X衍射等分析手段开展海相碎屑岩成岩作用和成岩演化研究,为塔里木盆地苏盖特布拉克组进一步开展油气勘探部署和甜点储层预测提供地质依据。结果表明:(1)研究区苏盖特布拉克组发育潮坪沉积环境的砂体,砂岩类型以岩屑石英砂岩、岩屑砂岩为主,偶见长石岩屑砂岩,成分成熟度和结构成熟度中等;(2)苏盖特布拉克组砂岩经历了压实(溶)作用、胶结作用、溶蚀作用及交代作用等成岩作用,压实作用是造成储层致密的直接原因,钙质胶结和硅质胶结是储层致密化的根本因素;(3)苏盖特布拉克组砂岩的成岩演化阶段已达到中成岩B期,成岩演化序列为:压实作用/自生黏土矿物(绿泥石)环边—第一期长石、岩屑溶蚀作用—第一期硅质胶结—第一期泥微晶方解石胶结/压溶作用/黏土矿物的伊利化—第二次硅质胶结/第二期铁方解石胶结—钙质胶结物溶蚀。据此建立的成岩演化模式为塔里木盆地超深层致密砂岩中甜点储层预测提供可靠的地质依据。  相似文献   

17.
Many modern deltas show complex morphologies and architectures related to the interplay of river, wave and tidal currents. However, methods for extracting the signature of the individual processes from the stratigraphic architecture are poorly developed. Through an analysis of facies, palaeocurrents and stratigraphic stacking patterns in the Jurassic Lajas Formation, this paper: (i) separates the signals of wave, tide and river currents; (ii) illustrates the result of strong tidal reworking in the distal reaches of deltaic systems; and (iii) discusses the implications of this reworking for the evolution of mixed‐energy systems and their reservoir heterogeneities. The Lajas Formation, a sand‐rich, shallow‐marine, mixed‐energy deltaic system in the Neuquén Basin of Argentina, previously defined as a tide‐dominated system, presents an exceptional example of process variability at different scales. Tidal signals are predominantly located in the delta front, the subaqueous platform and the distributary channel deposits. Tidal currents vigorously reworked the delta front during transgressions, producing intensely cross‐stratified, sheet‐like, sandstone units. In the subaqueous platform, described for the first time in an ancient outcrop example, the tidal reworking was confined within subtidal channels. The intensive tidal reworking in the distal reaches of the regressive delta front could not have been predicted from knowledge of the coeval proximal reaches of the regressive delta front. The wave signals occur mainly in the shelf or shoreface deposits. The fluvial signals increase in abundance proximally but are always mixed with the other processes. The Lajas system is an unusual clean‐water (i.e. very little mud is present in the system), sand‐rich deltaic system, very different from the majority of mud‐rich, modern tide‐influenced examples. The sand‐rich character is a combination of source proximity, syndepositional tectonic activity and strong tidal‐current reworking, which produced amalgamated sandstone bodies in the delta‐front area, and a final stratigraphic record very different from the simple coarsening‐upward trends of river‐dominated and wave‐dominated delta fronts.  相似文献   

18.
ERNESTO SCHWARZ 《Sedimentology》2012,59(5):1478-1508
The interpretation of sharp‐based shallow‐marine sandstone bodies encased in offshore mudstones, particularly transgressive units, has been a subject of recent debate. This contribution provides a multiple‐dataset approach and new identification criteria which could help in the recognition of transgressive offshore sandstone bodies worldwide. This study integrates sedimentology, ichnology, taphonomy and palaeoecology of Mulichinco Formation strata in the central Neuquén Basin (Argentina) in order to describe and interpret sharp‐based sandstone bodies developed in ramp‐type marine settings. These bodies are sandwiched between finer‐grained siliciclastics beneath and thin carbonates above. The underlying sediments comprise progradational successions from offshore mudstones to offshore transition muddy sandstones, grading occasionally into lower shoreface sandstones. The surfaces capping the regressive siliciclastics are flat and regionally extensive, and are demarcated by skeletal concentrations and a Glossifungites suite; they are also marked by sandstone rip‐up clasts, with encrustations and borings on all sides. These surfaces are interpreted as composite discontinuities, cut during a relative sea‐level fall and remodelled during the initial transgression. The overlying transgressive sandstone bodies are 3 to 7 m thick, >4 km long and about three times longer than wide; they are composed of fine‐grained sandstones with little lateral change in grain size. Cross‐stratification and/or cross‐lamination are common, typically with smaller‐scale structures and finer grain size towards the top. Large‐scale, low‐angle (5° to 8°) inclined stratification is also common, dipping at ca 30° with respect to body elongation and dominant currents. These sandstone bodies are interpreted as offshore sand ridges, probably developed under the influence of tidal currents. Intense burrowing is typical at the top of each unit, suggesting an abandonment stage. Final deactivation favoured colonization by epibenthic‐dominated communities and the formation of skeletal‐rich limestones during the latest transgressive conditions. As partial reworking of pre‐existing ridges occurred during this stage, the Mulichinco sandstone bodies are considered the remnants of transgressive offshore sand units.  相似文献   

19.
The meander-belt deposit comprises a sandstone resting on an erosion surface and bounded above and below by massive varicoloured mudstones with rootlet traces. The sandstone unit is composed of six bodies separated from one another, horizontally, by erosion surfaces; together the bodies form a single multilateral sand body. Internally each body is composed of lateral accretion units inclined at up to 6° from the horizontal. Vertical sequences of facies show significant variations but the grain size generally fines upwards. The principal lithofacies within the sandstones are, in common ascending order, intraformational conglomerate, large-scale cross-bedded, horizontal bedded and small-scale cross-laminated sandstone, and alternate sandstones and mudstones. Current directions are normal to the true slope of accretion surfaces and show insignificant scatter within individual bodies but are very diverse overall. Five of the sand bodies are believed to represent individual point bars, and one body an abandoned channel. Together they comprise the meander belt. The river was subject to very variable discharges and carried high suspended loads. Analysis of vertical profiles indicates that grain size segregation along the length of the point bars caused differentiation of the bars into coarse-grained heads and sandy tails.  相似文献   

20.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号