首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tropopause folds are one of the key mechanisms of stratosphere-troposphere exchange (STE) in extratropical regions, transporting ozone-rich stratospheric air into the middle and lower troposphere. Although there have been many studies of tropopause folds that have occurred over Europe and North America, a very limited amount of work has been carried out over northeastern Asia. Ozonesondes produced by the Institute of Atmospheric Physics were launched in Changchun (43.9°N, 125.2°E), Northeast China, in June 2013, and observed an ozone-enriched layer with thickness of 3 km and an ozone peak of 180 ppbv at 6 km in the troposphere. The circulation field from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) dataset shows that this ozone peak was caused by a tropopause fold associated with a jet stream at the eastern flank of the East Asian trough. By analyzing the ozone data from the ozone monitoring instrument and Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations, it was found that a high ozone concentration tongue originating from the lower stratosphere at high latitude (near central Siberia) intruded into the middle troposphere over Changchun between 5 and 8 km on 12 June 2013. The high-resolution WRF-Chem simulation was capable of describing events such as the tropopause fold that occurred on the cyclonic shear side of the jet stream. In addition, the TRAJ3D trajectory model was used to trace the origin of measured secondary ozone peaks in the middle troposphere back, for example, to stratospheric intrusion through the tropopause fold.  相似文献   

2.
利用国产GPSO3臭氧探空系统观测的大气臭氧探空资料和NCEP再分析资料,结合对天气形势、大气环流背景、高空位涡变化及对流层顶高度扰动的分析,深入研究了2008年冬季北京地区10~14 km高度范围内持续出现的臭氧次峰值及大气臭氧含量异常现象。结果表明:在2008年我国南方雪灾这一特殊时期,引起臭氧垂直分布持续出现次峰值现象及臭氧含量异常的主要原因是平流层空气强烈下沉运动及其与对流层的交换作用,而引起这种下沉运动及平流层-对流层交换则是由于该阶段特殊的天气背景,乌拉尔阻塞高压长时间维持,贝加尔湖到巴尔喀什湖一带横槽稳定存在,里海以东切断低压长期维持,造成冷空气长时间、稳定地南下影响北京上空臭氧的垂直分布。加之副热带急流的出现,北京正处于其入口区左侧,其上空有强烈的辐合下沉运动,有利于平流层空气向下输送。此次臭氧次峰值及臭氧含量异常的现象很好地说明,在冷空气天气过程的影响下,北京地区上空的平流层空气运动及其与对流层的交换十分活跃。  相似文献   

3.
利用NCEP/NCAR FNL客观分析资料和欧洲中期天气预报中心(ECMWF)的Interim再分析资料以及臭氧监测仪(OMI)的臭氧廓线资料,结合区域大气化学模式WRF-Chem对中国春季一次高空冷槽过境引起的对流层顶折卷过程(2012年3月19—21日)进行了分析,并从平流、湍流混合、对流输送等几个方面诊断分析了平流层臭氧向对流层的传输特征和细节。结果表明,发生于青藏高原西北侧的对流层顶折卷事件,其所在位置处于热带对流层顶向中纬度对流层顶的过渡区,由于陡峭的对流层顶南北梯度,在该区域发生的平流层-对流层物质交换(STE)比对流层顶东西方向折卷引起的物质交换要强烈和持久,跨越等熵面的物质交换和湍流混合对平流层-对流层物质交换有很大的贡献。大地形对平流层-对流层物质交换过程有显著的影响,且具有明显的日变化特征。早晚时段,大地形导致的爬坡上升气流显著,抑制了平流层空气与对流层空气的混合交换。午后,大地形热力作用增强,受背风坡局地环流的影响,靠近山顶处湍流混合作用对上对流层臭氧浓度升高的贡献显著增强,且地形越高,这种效应越显著。地形的湍流混合作用在2.5 km高度以上凸显,此高度之上地形平均高度每升高100 m,湍流混合的贡献增加约1%。  相似文献   

4.
In situ measurements of the vertical structure of ozone were made in Changchun(43.53?N, 125.13?E), China, by the Institute of Atmosphere Physics, in the summers of 2010–13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere(UTLS) caused by cut-off lows(COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed.Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere–troposphere exchange(STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause(LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere(LS) column ozone is-0.62,which implies a positive correlation between COL strength and LS ozone concentration.  相似文献   

5.
This case study investigates a stratospheric intrusion event down to the earth’s surface (near sea-level pressure) of the greater area of Athens (23.43°E 37.58°N), which occurred on 9 October 2003 and caused a remarkable increase in surface ozone concentrations not related to photochemical production. This event is among the rare case studies investigating, on the one hand, a deep stratospheric intrusion down to the earth’s surface at near sea-level pressure and, on the other, an event affecting the near surface ozone of a megacity such as Athens. The synoptic situation is described by a deep upper lever trough at 300 and 500 hPa extending over Greece, which is related to a deep tropopause fold as revealed by vertical cross sections of potential vorticity, relative humidity, divergence and vertical velocity. The analysis of potential vorticity at several isentropic levels indicates a hook-shaped streamer of high PV values (greater than 4 pvu at the 315 K isentropic level) over southeast Europe, which coincides with a streamer of dry air as observed from satellite images of water vapor. The aforementioned structure characterizes a textbook case study of stratosphere-to-troposphere transport. The Lagrangian particle dispersion model FLEXPART was used to calculate the trajectories of air particles reaching the receptor site and the fraction of particles with stratospheric origin. It reveals an important direct stratospheric impact within 1 day related to the tropopause fold described in this study with the fraction of stratospheric particles reaching maximum values of 1.9 and 4.5% for threshold values of the dynamical tropopause 2 and 1.5 pvu, respectively. Furthermore, a larger indirect aged stratospheric contribution is also revealed 4 to 5 days prior to the release, related to stratospheric intrusion events at the western Atlantic Ocean, reaching maximum values of 2.5 and 6.9% of particles crossing the 2 and 1.5 pvu potential vorticity surfaces, respectively.  相似文献   

6.
This paper gives a synthesis of three algorithms to detect the presenceof tropopause folds from vertical ozone/radio-sounding profiles and frommeteorological analysis. Also an algorithm to identify injection ofstratospheric air into the lower troposphere fromozone/7beryllium time series is presented. Differences in theresults obtained from the algorithms are observed and discussed with respectto the criteria for fold detection and input data used. Spatial gradients inthe obtained folding frequencies are made evident on a global scale from thealgorithm based on meteorological analysis (Q-vector/potential vorticity)and probably also on a regional European scale from algorithms both basedmeteorological analyses and on ozone/PTU soundings. The observed seasonalvariation of folding occurrence is rather flat except during summer whenalso some differences appear between the algorithms. By combining thefolding frequencies with literature estimates of the cross-tropopause ozonetransfer in single folding events, an average stratospheric ozone influxinto the troposphere of 5.7 ± 1.3× 1010 mol.cm-2 s-1 is obtained for the Northern hemisphereand 12± 2.7× 1010 mol. cm-2s-1 for Western Europe. Potential additional contributions dueto other stratosphere-troposphere exchange processes than folds are not yetincluded in these estimates. Finally, the link between statistics fromozone/7beryllium data and folding statistics is brieflydiscussed.  相似文献   

7.
We investigated the differences between stratospheric (S-type) and tropospheric (T-type) Arctic Oscillation (AO) events on the intraseasonal time scale, in terms of their influences on surface air temperature (SAT) over the Northern Hemisphere and the dynamic features associated with their spatial structures. S-type AO events showed a stratosphere-troposphere coupled structure, while T-type events exhibited a stratosphere-troposphere uncoupled structure. The annular SAT anomalies over the Northern Hemisphere were found to be associated with S-type AO events, whereas such an annular feature was substantially destructed in T-type AO events. The different horizontal structures in the troposphere of the two types could mainly be attributed to transient eddy feedback forcing. As for the vertically uncoupled structure of Ttype events, the underlying dynamical features that differentiate them from S-type events lie in the vertical propagation of zonally confined Rossby waves. In T-type events, the zonally confined Rossby wave packets can emanate from the significant height anomalies over Northeast Asia, where one vertical waveguide exists, and then propagate upward into the stratosphere. In contrast, such a vertical propagation was not evident for S-type events. The stratospheric anomalies associated with the upward injection of the zonally confined Rossby waves from the troposphere in T-type events can further induce the anomalous vertical propagation of planetary waves (PWs) through the interference between the climatological-mean PWs and anomalous PWs, leading to the final stratosphere-troposphere uncoupled structure of T-type events.  相似文献   

8.
The European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) meteorology and measurements from the Microwave Limb Sounder, High Resolution Dynamics Limb Sounder, and Ozone Monitoring Instrument onboard the Earth Observing System Aura satellite were applied to analyze the dynamical and chemical features of a cutoff low (COL) event over northeast China in early July 2007. The results showed the polar stratospheric origin of an upper-level warm-core cyclone at 100--300 hPa, associated with a funnel-shaped tropopause intruding into the mid-troposphere just above the COL center. The impacts of the stratospheric intrusion on both column ozone and ozone profiles were investigated using satellite measurements. When the intensity of the COL peaked on 10 July 2007, the total column ozone (TCO) increase reached a maximum (40--70 DU). This could be dynamically attributed to both the descent of the tropopause (~75%) and the downward transport of stratospheric ozone across the tropopause (~25%). Analysis of the tropospheric ozone profiles provided evidence for irreversible transport/mixing of ozone-rich stratospheric air across the tropopause near the upper-level front region ahead of the COL center. This ozone intrusion underwent downstream transport by the upper tropospheric winds, leading to further increase in TCO by 12--16 DU over broad regions extending from east China toward the northern Japan Sea via South Korea. Meteorological analysis also showed the precedence of the stratospheric intrusion ahead of the development of cyclones in the middle and lower troposphere.  相似文献   

9.
Results of the analysis of the stratospheric aircraft M-55 Geofizika measurements are presented. Estimates of the tropospheric air ratio near the thermal tropopause were conducted using the correlations between the water vapor and ozone values. The data of the measurements were used in the several aircraft campaigns held in the wintertime in the extratropical latitudes. The increased water vapor concentration was indicated during the flight on February 11, 2003 at the 12-km height which exceeds the averaged concentrations of water vapor in the extratropics by 1.5–2 times. The contribution of the tropospheric air near the thermal tropopause is quantitatively estimated. Results obtained here allow estimating the layer thickness in which the air masses of the different origin occur.  相似文献   

10.
利用中尺度大气化学模式WRF/Chem对2013年3月6日华南地区一次平流层入侵事件及其对对流层低层臭氧的影响进行模拟研究。通过加入UBC(Upper Boundary Condition)上边界处理方案,弥补WRF/Chem模式未考虑平流层臭氧化学反应的不足。结合臭氧探空廓线资料、地面O3、CO、NOx、相对湿度、温度和风速等观测资料以及再分析资料对模拟结果进行定量评估,结果表明模式能较为真实地模拟本次平流层入侵过程。模拟分析进一步揭示:(1)副热带高空急流是本次平流层入侵的主要原因。当华南地区处在副热带急流入口区左侧下沉区域时,平流层入侵将富含臭氧的干燥空气输送到对流层中低层。(2)本次平流层入侵对对流层低层臭氧收支有重要影响,导致香港地区近地层臭氧体积混合比浓度明显上升,如塔门站夜间臭氧浓度升高21.3 ppb(1 ppb=1×10-9)。地面气象场和化学物种的分析进一步确认了平流层入侵的贡献。(3)采用动力学对流层顶高度时零维箱式模型和Wei公式计算得到的平流层入侵通量相当,分别为-1.42×10-3 kg m-2 s-1和-1.59×10-3 kg m-2 s-1,这一结果与前人研究相吻合,且与采用热力学对流层顶高度计算所得到的结果具有可比性。  相似文献   

11.
The direct effects of sulfate aerosol, dust aerosol, carbonaceous aerosol, and total combined aerosols on the tropopause height are simulated with the Community Atmospheric Model version 3.1 (CAM3.1). A decrease of global mean tropopause height induced by sulfate, carbonaceous aerosol, and total combined aerosols is found, and a tropopause height increase is induced by dust aerosol. Sulfate aerosol decreases the tropospheric temperature and increases the stratospheric temperature. These effects cause a decrease in the height of the tropopause. In contrast, carbonaceous and total combined aerosols increase both the tropospheric and the stratospheric temperatures, and they also cause a decrease in the height of the tropopause. The changes in the tropopause height show highly statistically significant correlations with the changes in the tropospheric and stratospheric temperatures. The changes in the tropospheric and stratospheric temperatures are related to the changes in the radiative heat rate, cloud cover, and latent heat, but none of these factors absolutely dominate the temperature change.  相似文献   

12.
The two types of El Niño that have been identified, namely the eastern Pacific (EP) and central Pacific (CP) El Niños, are known to exert different climatic impacts on the North Atlantic region during winter. Here, we investigate the characteristics of the teleconnection of the two El Niño types with a focus on the stratosphere-troposphere coupling. During the EP El Niño, polar stratospheric warming and polar vortex weakening frequently occur with a strong tendency for downward propagation near the tropopause. Consequently, the atmospheric pattern within the troposphere over the North Atlantic sector during midwinter closely resembles the negative North Atlantic Oscillation pattern. In contrast, during CP El Niño events stratospheric warming events exhibit a much weaker downward propagation tendency. This difference in the stratospheric circulation response arises from the different seasonal evolution of the tropospheric wave response to the two El Niño types. For the EP El Niño, the Aleutian Low begins growing during December and is sustained throughout the entire winter (December to February), which provides favorable conditions for the continuous downward propagation of the stratospheric warming. We also discuss the origin of the difference in the teleconnections from the two types of El Niño associated with the distinct longitudinal position of the warm SST anomaly that determines troposphere-stratosphere coupling.  相似文献   

13.
2000年北半球平流层、对流层质量交换的季节变化   总被引:21,自引:6,他引:15  
杨健  吕达仁 《大气科学》2004,28(2):294-300
用2000年NCEP资料,P坐标下Wei公式诊断北半球平流层、对流层交换的季节变化.主要结论:(1)热带西太平洋是物质由对流层向平流层输送的主要通道,并有明显的季节性东西移动.由于2000年赤道辐合带偏弱,因此秋季通量最大.(2)中高纬度地区同时存在向上、向下的通量,大尺度槽区伴随着平流层向下的输送.一年中冬春季向下的输送强,夏秋季较弱,其季节变化与大尺度环流的季节性变化一致.(3)东亚地区存在很强的平流层向下输送,且中心位置移动不大.只占北半球5.6%面积的东亚其年净交换量竟占北半球的29%,这说明东亚地区的平流层与对流层之间的质量交换对北半球平流层、对流层交换研究的重要性.  相似文献   

14.
位温、等熵位涡与锋和对流层顶的分析方法   总被引:10,自引:2,他引:8  
陶祖钰  郑永光 《气象》2012,38(1):17-27
等熵位涡分析是位涡理论的分析基础。此文的目的是介绍等熵位涡分析所必需掌握的基本概念和方法。文中从位温和位涡、对流层和平流层、锋和对流层顶的基本性质出发,讨论了锋和对流层顶在剖面图、等压面图及等位温面(即等熵面)图上的特征。文中给出了各种分析实例图形,并通过分析和对比指出:平流层的高位涡是对流层顶以上位温随高度急剧增加位温垂直梯度特别大的结果;位温垂直梯度是决定位涡分布的主要因子;等熵位涡图主要反映极地气团的活动,同时也是与极地气团密切关联的锋、急流、对流层顶的综合反映。最后提出了等熵位涡分析中需要避免的一些错误认识,特别是不能将等位温面上的流线当成轨迹的错误,并由此得出平流层空气侵入对流层下部的错误推论。  相似文献   

15.
在过去5年中,在国家自然科学基金委员会和中国科学院的项目支持下,针对以大气上下层相互作用中的多时空尺度过程特征及其与天气气候的关系为主要关注内容,开展了几个方面的研究。本文介绍其中的一些主要进展与结果,包括:(1)平流层臭氧的探测与分析研究;(2)平流层-对流层质量交换(STME)与对流层顶特征研究;(3)中层大气多尺度波动特征研究;(4)大气辐射传输和中层大气卫星临边遥感新方法研究。  相似文献   

16.
Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.  相似文献   

17.
Using the measurements from the Halogen Occultation Experiment(HALOE) and the European Centre for Medium-Range Weather Forecasts(ECMWF) Interim reanalysis data for the period 1994-2005, we analyzed the relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies. It is found that tropical tropopause temperature is correlated with stratospheric water vapor, i.e., an anomalously high(low) tropical tropopause temperature corresponds to anomalously high(low) stratospheric water vapor during the period 1994-2005,except for 1996. The occurrence frequency and strength of deep convective activity during the‘mismatched'months is less and weaker than that during the‘matched'months in 1996. However, the instantaneous intensity of four short periods of deep convective activity, caused by strong surface cyclones and high sea surface temperatures, are greater during the ‘mismatched'months than during the ‘matched'months. Water vapor is transported from the lower troposphere to the lower stratosphere through a strong tropical upwelling, leading to an increase in stratospheric water vapor. On the other hand, deep convective activity can lift the tropopause and cool its temperature. In short, the key factor responsible for the poor correlation between tropical tropopause temperature and stratospheric water vapor in1996 is the instantaneous strong deep convective activity. In addition, an anomalously strong Brewer-Dobson circulation brings more water vapor into the stratosphere during the‘mismatched'months in 1996, and this exacerbates the poor correlation between tropical tropopause temperature and stratospheric water vapor.  相似文献   

18.
中尺度低涡发展时高层流场特征及能量学研究   总被引:4,自引:4,他引:4       下载免费PDF全文
本文通过对一次长江中游中尺度低涡的分析发现,在这类斜压性低涡发展时,低涡西侧冷区对流顶明显下降,在低涡区发生折叠现象.与大位涡值相联系的平流层空气从该处下沉至对流层,对流顶下陷比对流活动区对流顶高度变化要早且明显.中尺度涡旋发展所需要之动能主要取自辐散风动能,在对流层高层和低层这种正向转换最为清晰,而整个气柱中位能向辐散风动能转换,以支持它在涡旋发展过程中之消耗.但高层与低层的情况不同.在100hPa高空辐散风动能既支持了涡旋动能,又向总位能转换.分析表明,高层对流层流场在中尺度系统发展过程中是十分活跃的,必须引起足够的重视.  相似文献   

19.
平流层爆发性增温(SSW)超前于对流层环流异常,是延长冬季寒潮低温预报时效的重要途径之一。然而强SSW事件前后地面温度响应的区域和时间存在不确定性,其中涉及的平流层—对流层耦合过程和机理也不十分清楚。本文采用1979~2021年ERA5再分析数据集,研究了2020/2021年冬季“偏心型”强SSW事件前后中高纬度地区地面温度异常的演变特征,并分析了其与等熵大气经向质量环流平流层—对流层分支的耦合演变模态的动力联系。结果表明,伴随此次强SSW事件,亚洲和北美中纬度地区的寒潮低温事件分别在绕极西风反转为东风之前和再次恢复为西风之后发生。SSW前后大气经向质量环流的平流层向极地暖支与对流层高层向极暖支、低层向赤道冷支之间呈现出三个阶段的耦合演变模态: 同位相“加强—加强”、反位相“加强—减弱”以及反位相“减弱—加强”。加强的质量环流对流层向赤道冷支是SSW前后寒潮低温事件的主要原因,而加强的向极地平流层暖支是SSW发生及其伴随的北极涛动负位相持续加强的主要原因。大气经向质量环流不同的垂直耦合模态取决于行星波槽脊在对流层顶和对流层中低层两个关键等熵面上的西倾角异常。西倾角异常表征大气波动的斜压性,主要通过影响关键等熵面以上向极地的净质量输送和其下向赤道的净质量输送进行调控。尤其在SSW发生后的极涡恢复期,对流层顶处异常偏弱的斜压性会加强对流层向极地暖支,进而加强向赤道冷支,有利于寒潮低温的发生。本次SSW事件前后大气经向质量环流三支的耦合演变模态,与历年平流层北半球环状模(NAM)负事件中极区平流层温度异常信号下传滞后的平流层—对流层耦合演变类型相一致,其在波动尺度方面也存在共同特征,即SSW事件或NAM负事件前期对流层一波加强且上传,后期对流层二波加强但较难上传。  相似文献   

20.
对流层顶研究回顾   总被引:5,自引:0,他引:5  
杨双艳  周顺武 《气象科技》2010,38(2):145-151
大气急流、飞机颠簸、臭氧层顶等重要物理、化学现象均与对流层顶的位置、强度及其变动密切相关,因此在研究自由大气的气候和大气环流时,作为对流层与平流层过渡层的对流层顶是非常重要的,对流层顶研究已成为当今大气科学的研究热点之一。对近几十年来对流层顶研究领域的有关研究作了简要回顾,主要从对流层顶的分布特征、对流层顶要素变化以及对流层顶与臭氧的关系等几个方面进行综述。在此基础上,总结出对流层顶研究遇到的几个困难。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号