首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements are presented of median floc diameters and associated environmental data over spring-tide tidal cycles at two stations in the muddy Tamar Estuary, UK, for winter, spring and summer conditions. The particulate organic carbon and particulate total carbon contents of mudflats and SPM (suspended particulate matter) at the stations, together with other evidence, indicates that much of the SPM was derived from mud sources that were located between the two stations during winter and spring, and from very mobile sediment sources in the upper estuary during summer. Observed in-situ median floc sizes varied widely, from <50 to >500 μm and rapid settling of particles close to HW and LW (high and low water) left only the smaller flocs in suspension. Time-series of depth-averaged median floc sizes generally were most closely, positively, correlated with depth-averaged SPM concentrations. Floc diameters tended to reach maximum median sizes near the time when SPM concentrations were highest. These high concentrations were in turn largely generated by resuspension of sediment during the fastest current speeds. Although such correlations may have arisen because of SPM-driven floc growth - despite fast tidal currents - there is also the possibility that tough aggregates were eroded from the intertidal mudflats and mudbanks. Although a hypothesis, such large aggregates of fine sediment may have resulted from the binding together of very fine bed particles by sticky extracellular polymeric substances (EPS) coatings, produced by benthic diatoms and by other biologically-mediated activity. A rapid reduction of SPM occurred at the up-estuary station within 2.5 h of HW on the flood, when decelerating currents were still relatively fast. It appears that at least two processes were at work: localised settling of the largest flocs and up-estuary transport in which large flocs were transported further into the estuary before settling into the Tamar's ETM (estuarine turbidity maximum) over the HW-slack period. Up-estuary advection of large flocs and their eventual settling would place the down-estuary edge of the ETM above the upper-estuary station during summer, spring-tide conditions. This position of the ETM was observed close to HW during longitudinal surveys of the estuary.  相似文献   

2.
Results are presented from a series of settling column experiments investigating temporal variations in the flocculation characteristics of purely cohesive (kaolin clay) sediment suspensions and cohesive (kaolin) and non-cohesive (fine sand) sediment fraction mixtures. Experimental runs were conducted under controlled hydrodynamic conditions generated by a rigid array of in-phase oscillating grids. The results indicated that rapid initial floc aggregation occurred under low turbulent shear rates, with peak maximal and root-mean-square (r.m.s.) floc sizes (∼ 400 μm and ∼ 200 μm, respectively) attained after relatively short time periods, before reducing with time. By contrast, lower aggregation rates and smaller floc sizes were observed under higher shear conditions, with flocs retaining suspended in the settling column for longer time scales due to the increased turbulence. The mud input concentration displayed some correlation with maximal and r.m.s. floc sizes at higher shear rates but no correlation was apparent at low shear rates. This observed floc behaviour may be attributed to the differences in concentration gradients at high and low shear rates that affect both floc settling rate and time required for flocs to attain equilibrium size. The addition of the fine sand fraction to the kaolin clay suspension reduced both the initial floc formation (i.e. aggregation) rate and the maximal and r.m.s. floc sizes attained throughout the experiments. The reduction in maximal floc sizes appeared to be enhanced by an increase in the ratio of fine sand to kaolin clay content within the mixture.  相似文献   

3.
In the Bach Dang–Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008–2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ∼235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment trapped in a near-bed layer at low turbulent energy, this causes the silting up of the waterways leading to the harbour of Haiphong.  相似文献   

4.
《Journal of Sea Research》1999,41(1-2):87-95
In situ instruments, particularly the instrument INSSEV (in situ settling velocity) have given new information on the sizes, settling velocities and effective densities of individual flocs within the spectrum of distribution. The low-density macroflocs (diameter >∼150 μm) contain a mixture of organic and inorganic constituents that become separated when the flocs are disrupted to form microflocs. Representation of the floc characteristics in terms of fractals reveals a range of fractal dimensions representing the distributions varying between 1 and 3, instead of the ideal value of 2. Measurements in estuarine turbidity maxima and on intertidal mudflats show that the fractal dimension is less than 2 in situations where turbulent shearing causes disruption of the flocs. At the same time increasing suspended sediment concentration tends to increase the fractal dimension. Measurements of size using an in situ Malvern sizer show that the floc size distribution is also affected by both turbulent energy dissipation and by concentration. Complementary laboratory studies suggest that, at a constant concentration, flocculation is enhanced by low shear, but that disruption occurs at higher shear. These experiments confirm the relationship between fractal dimension, shear stress and concentration.  相似文献   

5.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

6.
长江口北槽口外悬沙浓度垂线分布的数学模拟   总被引:8,自引:2,他引:6  
时钟  周洪强 《海洋工程》2000,18(3):57-62
利用垂向一维悬沙运动模型,对长江口北槽口外大、小潮悬沙浓度垂线分布进行模拟,模拟结果同“六点法”实测值拟合较好,表明影响悬沙浓度垂线分布的主要因素为悬沙垂向扩散及絮凝沉降作用。  相似文献   

7.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

8.
9.
朱文谨  王娜  董啸天  丛新  韩雪  潘锡山 《海洋通报》2020,39(4):475-480,506
选取海州湾近岸潮流和含沙量实测资料,分析水体紊动强度与含沙量对近岸絮凝体沉降速度的影响,提出了新的沉降速度确定方法。研究表明:淤海州湾近岸泥沙沉降速率大部分在 0.05 ~ 2.50 mm/s 之间,潮周期内泥沙絮凝体的沉降速度 有明显变化。于含沙量较小时,泥沙絮凝体的沉降速度基本随含沙量的增加而增加;含沙量较大时,含沙量与沉降速度呈现出负相关,无论是大潮还是中潮,当含沙量达到 0.7 kg/m3左右时,絮团沉降速度最大,而随着含沙量的增大,絮团沉降速度开始减小。盂在涨落潮垂线平均流速最大时刻,紊动强度达到峰值,含沙量较低时,随着紊动强度增加,沉降速度也随之增加,大潮期间紊动强度对泥沙沉降速度的影响高于中潮。榆新的泥沙沉降速度计算公式不仅考虑了含沙量,还计入了紊动强度 G,大大提高了沉降速度计算值与实测值的相关性。  相似文献   

10.
The ways by which fine sediment may reach the sea bed are examined, and it is shown that gravitational settling through the sublayer dominates over both Brownian diffusion and scavenging by large fast-sinking particles. The settling process is modulated by bed shear stress, which provides a mechanism for preventing deposition of the finest sizes. This allows fractionation during deposition of suspended sediment and may control the amount of silt in a deposit. In contrast, the amount of sand may be controlled by time-winnowing involving removal of the silt and clay fractions.  相似文献   

11.
The purpose of this study was to evaluate related processes of sediment consolidation and resuspension in a coastal basin and how these processes influence retention of fine sediment delivered by a river diversion. Sediment samples were collected from Lake Lery, a coastal receiving basin of the Caernarvon Diversion from the Mississippi River, Louisiana. Consolidation was tested for six initial sediment concentrations (14.0–105 kg m–3) in a settling column over 15-day periods. Mud erodibility was tested at seven shear stress regimes (0.01–0.60 Pa) using a dual-core Gust erosion microcosm system, on cores containing suspensions that consolidated for 1, 2, and 4 weeks. Consolidation rates were found to be inversely and exponentially related to initial suspension concentration, over concentrations ranging from fluid mud (10–200 kg m–3) to hydraulic dredge effluent. Consolidation is best predicted by a function consisting of two exponential terms and one asymptotic constant, describing rates of rapid initial and slower subsequent settling. Coupled resuspension and consolidation tests (concentrations of 20–21 kg m–3) show that shear stresses generating the highest turbidity peaks increase from ≤0.30 Pa after 2 weeks of consolidation to ≥0.45 Pa after 4 weeks, and this strengthening cannot be attributed solely to increasing sediment concentration over time. Comparison of measured erosion shear stresses with bed shear stresses typical of coastal lakes and bays suggests that this degree of strengthening, if given time to occur, could increase the overall retention of fine sediments deposited on lake and bay floors.  相似文献   

12.
钱塘江河口细颗粒泥沙絮凝沉降特性研究   总被引:3,自引:0,他引:3  
钱塘江口河口上游河流和海域来沙多为细颗粒泥沙,粘性细颗粒泥沙由于其特殊的表面电化学性质遇到强电解质海水而产生絮凝沉降,是形成河口淤积的原因之一。影响絮凝的因素很多,除了电解质,还有泥沙粒径的大小、盐度、含沙量、PH值、温度、有机质含量、矿物成分、水流速度及紊动情况等。本文通过粒度分析、静水沉降、动水沉降等各种实验手段分析钱塘江口泥沙的基本特性,找出最佳絮凝盐度以及泥沙不淤流速等值,初步探讨了细颗粒泥沙的絮凝机理,为治理钱塘江口提供科学依据。  相似文献   

13.
任杰  张颖 《海洋学报》2019,41(9):105-113
本文利用2010年枯季在珠江口进行的大、中、小潮LISST剖面及底边界层观测资料,分析了磨刀门河口枯季稳定存在的絮团三峰结构,即构建絮团的基本粒子的平均粒径约为8.3~9.0 μm,小絮团为36~100 μm,大絮团大于180 μm。小潮期,盐跃层捕集的悬浮泥沙以强絮凝过程为主,大絮团含量占优;中、大潮期,平均粒径普遍增大,絮凝占优。潮内的动力变化对絮团多峰结构及形态参数的影响不明显,絮凝与解凝处于动态平衡。结合坐底三角架的湍流资料和简化的群体平衡模型(Population Balance Equation,PBE),进一步揭示了絮团变化的湍流动力机制。高流速下的强紊动剪切力,直接导致大絮团被破坏形成小絮凝体,絮凝体平均粒径减小,反之絮凝强于解凝作用。同时,基于高斯矩积分方法求解PBE,得到的粒径分布基本与观测值吻合,说明在有较好的现场湍流与粒径观测资料的条件下,PBE包含的湍流动力机制可以用来研究黏性泥沙的絮凝过程。  相似文献   

14.
Settling velocity is a fundamental parameter in sediment transport dynamics.For uniform Par-ticles,there are abundant formulas for calculation of their settling velocities.But in natural fields,sedi-ment consists of non-uniform particles.The interaction among particles is complex and should not be neg-lected.In this paper,based on the analysis of settling mechanism of non-cohesive and non-uniform parti-cles,a theoretical model to describe settling mechanism is proposed.Besides suspension concentration andupward turbulent flow caused by other particles,collision among particles is another main factor influ-encing settling velocity.By introducing the collision theory,equations of fall velocity before collision,colli-sion probability,and fall velocity after collision are established.Finally,a formula used to calculate the set-tling velocity of non-cohesive particles with wide grain gradation is presented,which agrees well with theexperimental data.  相似文献   

15.
Results from a small set of laboratory experiments are presented here that help further constrain the processes governing the production of turbidity currents from impulsive failures of continental shelf and slope deposits. Three mechanisms by which sediment can be transferred from a parent debris flow to a less-dense turbidity current were observed and quantified. These mechanisms are grain-by-grain erosion of sediment from the leading edge of the parent flow, detachment of thin layers of shearing material from the head of the parent flow, and turbulent mixing at the head of the parent flow. Which transfer process dominates an experimental run depends on whether the large dynamic stresses focused on the head of the debris flow are sufficient to overcome a effective yield strength for the parent sediment+water mixture and on whether the dynamic stresses are sufficient to induce the turbulent flow of the parent mixture. Analysis of data from Marr et al. [Geol. Soc. Am. Bull. 113 (2001) 1377] and Mohrig et al. [Geol. Soc. Am. Bull. 110 (1998) 387] support the use of a shear strength to dynamic stress ratio in constraining necessary critical values for occurrence of the different production mechanisms. Direct sampling of turbidity currents using racks of vertically stacked siphons was used to measure both the quantity of sediment eroded from the heads of non-mixing parent flows and the distribution of particle sizes transported by the developing turbidity currents. Acoustic backscatter imaging was used to better resolve the internal boundary separating any turbulent mixing zone near the front of a flow from unmodified parent material.  相似文献   

16.
Understanding suspended particulate matter (SPM) dynamics in coastal waters is crucial to assess changes in coastal sediment budgets and biogeochemical fluxes. SPM dynamics are subject to various physical and biological factors and processes such as, e.g. tidal currents and aggregation which can be enhanced by extracellular polymeric substances (EPS) that are produced by algae and bacteria. It is still unclear how the different factors and processes interact and together determine SPM dynamics. To unravel the interacting processes and factors, we propose a new distribution-based modeling approach. Based on the derivation of explicit equations for size distribution characteristics of SPM such as the average radius, we derived a model of reduced complexity characterized by low initialization and parameterization effort as well as low computational cost. The proposed 0D model includes the processes of aggregation and fragmentation due to shear, aggregation due to differential settling, deposition, resuspension and tidal exchange, and describes the evolution of the SPM concentration in the water column linked by the settling velocity to the change of the mass average radius of the aggregate distribution. A systematic parameter variation for critical bottom shear stress of erosion, the size of resuspended aggregates, the fractal dimension, the collision efficiency, and the aggregate strength has been performed and compared to observations in the back-barrier basin of Spiekeroog Island in the German Wadden Sea. This analysis confirms the hypothesis that in winter biological influences on SPM dynamics are smaller compared to summer. This is mainly reflected by a significant shift in the various parameters. We hence conclude that biological control mechanisms have a much more quantitative relevance for SPM dynamics than currently represented by state-of-the-art SPM transport models.  相似文献   

17.
Estuarine Physical Processes Research: Some Recent Studies and Progress   总被引:2,自引:0,他引:2  
The literature on estuarine physical studies is vast, diverse and contains many valuable case studies in addition to pure, process-based research. This essay is an attempt to summarize both some of the more recent studies that have been undertaken during the last several years, as well as some of the trends in research direction and progress that they represent. The topics covered include field and theoretical studies on hydrodynamics, turbulence, salt and fine sediment transport and morphology. The development and ease-of-application of numerical and analytical models and technical software has been essential for much of the progress, allowing the interpretation of large amounts of data and assisting with the understanding of complex processes. The development of instrumentation has similarly been essential for much of the progress with field studies. From a process viewpoint, much more attention is now being given to interpreting intratidal behaviour, including the effects of tidal straining and suspended fine sediment on water column stratification, stability and turbulence generation and dissipation. Remote sensing from satellites and aircraft, together with fast sampling towed instruments and high frequency radar now provide unique, frequently high resolution views of spatial variability, including currents, frontal and plume phenomena, and tidal and wave-generated turbidity. Observations of fine sediment characteristics (floc size, aggregation mechanisms, organic coatings and settling velocity) are providing better parameterizations for sediment transport models. These models have enhanced our understanding both of the estuarine turbidity maximum and its relationship to fronts and intratidal hydrodynamic and sedimentological variability, as well as that of simple morphological features such as intertidal mudflats. Although few, interdisciplinary studies to examine the relationships between biology and estuarine morphology show that bivalve activity and the surface diatom biofilm on an intertidal mudflat can be important in controlling the erosion of the surface mud layer.  相似文献   

18.
长江河口波-流共同作用下的全沙数值模拟   总被引:15,自引:1,他引:15  
针对长江河口地形、水文、泥沙运动等复杂的特点,建立了波-流共同作用下的二维全沙及河床演变模型.在合理计算研究区域流场等的基础上,利用切应力概念确定悬沙扩散方程中的源函数;通过系列数值试验和实测资料的统计分析,在经典的泥沙临界起动速度中引入反映河床底质结构及固结程度的局地系数;选用由流速、盐度、含沙量浓度确定的泥沙颗粒絮凝沉降速度,从而提高长江口悬沙场数值模拟精度.在底沙输运计算中,提出一种较为合理确定有关参数的方法.通过洪、枯季大、中、小潮水文、泥沙资料和典型台风引起航槽冲淤变化的实测资料验证,表明该文提出的模型能较合理地反映长江河口流场、泥沙场及地形的演变.  相似文献   

19.
The flocculation of cohesive sediment in the presence of waves is investigated using high-resolution field observations and a newly-developed flocculation model based on artificial neural networks. Vertical profiles of suspended sediment concentration and turbulent intensity are estimated using measurements of current profile and acoustic backscatter. The vertical distribution of floc size is estimated using an artificial neural network (ANN) that is trained and validated using floc size measurements at one vertical level. Data analysis suggests a linear correlation between suspended sediment concentration and turbulence intensity. Observations and numerical simulations show that floc size is inversely related to sediment concentration, turbulence intensity and water temperature. The numerical results indicate that floc growth is supported by low concentration and low turbulence. In the vertical direction, mean size of flocs decreases toward the bottom, suggesting floc breakage due to increasing turbulence intensity toward the bed. A significant decrease in turbulent shear could occur within the bottom few-cm, related to increased damping of turbulence by sediment induced density stratification. The results of the numerical simulations presented here are consistent with the concept of a cohesive sediment particle undergoing aggregation-fragmentation processes, and suggest that the ANN can be a precise tool to study flocculation processes.  相似文献   

20.
The Cretan Basin can be characterized as a back-arc basin of the Hellenic Trench System, that is related to the subduction zone of the African Plate under the Eurasia Plate. The study area includes the narrow and relatively steep (gradient 1.5°) continental shelf of the island of Crete followed by the steep slope (2°–4°) and the rather flat deeper part of the Cretan basin (water depths >1700 m).Surficial sediments of the coastal zone are coarser and of terrigenous origin, while in deeper waters finer sediments, of biogenic origin, are more abundant. Sand-sized calcareous sediment accumulations, identified in middle-lower slope, may be attributed to the aggregation of seabed biogenic material related to the near bed current activity.High resolution profiles (3.5 kHz) taken from the inner shelf shows a typical sigmoid-oblique progradational configuration, implying prodelta sediment accumulation during the Holocene. In the upper-middle slope, sub-bottom reflectors indicate continuous sedimentation of alternating fine and/or coarse grained material. Small-scale gravity induced synsedimentary faults appeared, locally. In contrast, a series of gravity induced faults, identified in the lower slope, are associated with sediment instabilities due to seismotectonic activity. Sediment cores taken from the shelf-break consists of calcareous muddy sand with small amounts of terrigenous silt and fine sand, while the cores recovered from the middle slope has revealed a more homogeneous fine sediment texture of hemipelagic deposition.The prevailing accumulation processes in the southern margin of the Cretan basin are: (i) prodelta deposition in the inner-middle shelf; (ii) settling from bottom nepheloid layers in the shelf and upper slope; (iii) calcareous sediment formation due to settling from suspension and post accumulation aggregation (middle-lower slope); (iv) long-term episodic sediment gravity processes in the lower slope; and (v) to a lesser extent, redeposition from resuspension due to gravity processes and bottom currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号