首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

2.
Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.  相似文献   

3.
Two cores from Trout Lake, northern Yukon, yielded quantitative estimates of summer air temperatures using fossil midge larvae. Warming began around 14,400?cal?yr BP, with inferred mean July air temperatures reaching values warmer than present by 12,800?cal?yr BP. A 1?°C cooling from 12,200 to 11,200?cal?yr BP closely corresponds with the Younger Dryas chronozone. A broad temperature maximum occurred between 10,800 and 9,800?cal?yr BP, with mean July air temperature about 2.2?°C warmer than present. This represents an early Holocene thermal maximum and coincides with increased organic content of the sediment. Both the shallow- and deep-water cores show similar temperature trends for their overlapping periods. The inferred rise in mean July air temperature at 14,200?cal?yr BP coincides with a shift in vegetation from an herb- to shrub-dominated landscape. In contrast, the increase in Alnus pollen at 6,400?cal?yr BP does not coincide with a change in temperature, but may be a response to a rise in precipitation.  相似文献   

4.
Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.  相似文献   

5.
Although lake sediment archives are widely used for reconstructing historical records of atmospherically delivered pollutants, the quantitative relationship between fallout levels and their record in the sediments is complex and not well known. The original input signal from the atmosphere can be significantly distorted by mediating transport processes in the catchment, through the water column and within the sediments themselves. Since these processes also affect the fallout radionuclide 210Pb commonly used to date sediments, a better understanding of their impact is also important to improving the accuracy and reliability of sediment dating. Blelham Tarn has been the subject of a number of palaeolimnological investigations using radiometric dating techniques since the early 1970s. More recently it was the site of a major study carried out within the EU Transuranics project concerning the long-term fate of fallout radionuclides in catchment/lake systems. This paper reviews the radiometric data from this study and uses the results to determine mass balances for fallout 210Pb, 137Cs and 239+240Pu in Blelham Tarn, and their spatial distribution over the bed of the lake. Atmospheric fluxes were determined by measuring concentrations in rainwater and cumulative inventories in soil cores from non-eroding sites. Sediment records in a grid of 16 cores were used to determine the spatial distribution over the bed of the lake, and net inputs from the catchment. Mass balance calculations indicate that c. 47% of 210Pb in the sediments derives from erosive inputs from the catchment. For 239+240Pu the figure rises to 61%. Reduced amounts of 137Cs in the sediments are attributed to greater losses of this radionuclide from the water column via the outflow due to its greater solubility. Inputs of radionuclides from the catchment are concentrated near one of the major input streams. Away from this part of the lake the sediment record is dominated by direct atmospheric fallout, though the detailed pattern is influenced by sediment focussing. A one parameter catchment/lake transport model is developed that incorporates the assumption that transport rates will decline with time as fallout on the catchment diffuses into the soil and becomes less available for removal. Values of the transport parameter were calculated for 210Pb and 239+240Pu and found to be comparable. The results suggest that it will take c. 11000 years to remove 50% of 239+240Pu from the catchment to the lake.  相似文献   

6.
A high resolution study of early Holocene climate and palaeoceanography has been performed on two combined sediment cores from Malangenfjord, northern Norway. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. Fauna and stable oxygen and carbon isotopes indicate cool, meltwater-depleted water masses in the fjord from 12000 to 11400 cal. yr BP followed by a warming between 11400-10300 cal. yr BP. The climatic variability can be explained partly by freshwater forcing hampering the North Atlantic heat conveyor, and partly by changing solar irradiance. A major cooling event at 11500-11400 cal. yr BP, followed by a rapid warming, is correlated to the Preboreal Oscillation, a widespread signal in the North Atlantic region which is probably linked to the increased meltwater flux to the northern North Atlantic at this time. Brief and small-scale cooling events between 10 300 and 10100 cal. yr BP, correlated to the onset of increased 10Be flux in the Greenland ice cores, suggest a response to solar forcing.  相似文献   

7.
An 8 m core from the central plain of the Petit Lac d'Annecy, France, two floodplain cores, river bedload sediments and several hundred soil samples from the catchment have been studied using magnetic techniques. The soils, mainly developed on limestones and local glacial tills, show widespread magnetic enhancement with higher ferrimagnetic concentrations and contents of SP grains than found in the lake sediments. Some soils show significant concentrations of canted antiferromagnetic minerals (mainly haematite). Using magnetic quotient parameters the surface soils are classified into four mineralogical types. The lake and floodplain sediment properties over the past 6000 yrs can largely be explained by the erosion and deposition of these sources, with a smaller superimposed biogenic (magnetosomes) signal. Derived sediment-source linkages allow the construction of several hypotheses about geomorphological changes in the catchment system: (i) the long-term erosion of high altitude unweathered substrates has gradually increased towards the present day; (ii) the erosion of high altitude soils has increased within the last 1000 yrs, possibly during the period of the 'Little Ice Age'; (iii) shifts towards an increased erosion of surface lowland soil occurred ~2000 and 1000 yrs ago and may be linked to an accelerated accretion of floodplain overbank deposits; (iv) there has been a significant storage of surface soil within floodplains, which leads to an underestimation of the importance of soil erosion in the lake sediment records; (v) the sediment transported by high magnitude, low frequency flood events has shifted in source from high altitude soils before ~1000 cal. yr BP to lowland and mid-altitude free draining soils after ~1000 cal. yr BP.  相似文献   

8.
Seven vibro-cores were collected from three shallow lakes of the Gabon (Kamalété, Nguène, Maridor) along a 300-km west–east transect close to the Equator. These lakes are located in very distinct landscapes: coastal forest-savanna mosaic, rain forest and savanna with colonising forest, respectively. Core chronologies were established by radiocarbon dating. Study of these lacustrine archives (textural variables, clay minerals, organic matter components, δ13C, pollen) allowed comparison of late Holocene environmental changes recorded at each site and with results from other studies. Lake Kamalété indicates minor climatic deterioration (increased drying and greater seasonality) between 1,410 and 500 cal. years BP, which is also recognised in southern Cameroon and east-central Africa. Lake Nguène was surrounded by dense moist forest throughout the last 4,110 years, but shows significant deterioration from ~2,800 cal. years BP, a phenomenon seen at nearby sites. Lake Maridor shows a decline of forest initiated a little after 3,800 cal. years BP, which indicates timing that is distinct from the two other sites. This was probably a response to local conditions (i.e. outlet damming). Although the three lakes display generally parallel climatic trends perhaps linked to SST oscillations, there is not perfect coherence between these three sites. Differences among the three basins may be attributable to local factors like groundwater hydrology and slope instabilities of such shallow lake systems in this equatorial region.  相似文献   

9.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

10.
Sediment cores collected from embayed lakes along the east-central coast of Lake Michigan are used to construct aeolian sand records of past coastal dune mobility, and to constrain former lake levels in the Lake Michigan basin. Time series analysis of sand cycles based on the weight-percent aeolian sand within lacustrine sediment, reveals statistically significant spectral peaks that coincide with established lake level cycles in Lake Michigan and the Gleissberg sunspot cycle of minima. Longer cycles of ~ 800 and ~ 2200 years were also identified that correspond to solar cycles. Shorter cycles between 80 and 220 years suggest a link between coastal dune mobility, climate, and lake levels in the Lake Michigan basin. Radiocarbon-dated sedimentary contacts of lacustrine sediment overlying wetland sediment record the Nipissing transgression in the Lake Michigan basin. Lake level rise closely mimics the predicted uplift of the North Bay outlet, with lake level rise slowing when outflow was transferred to the Port Huron/Sarnia outlet. The Nipissing highstand was reached after 5000 cal (4.4 ka) BP.  相似文献   

11.
《Geomorphology》2003,49(1-2):71-88
Knowledge of long-term average rates of erosion is necessary if factors affecting sediment yields from catchments are to be understood. Without such information, it is not possible to assess the potential influence of extreme storms, and, therefore, to evaluate the relative importance of various components of a sediment budget. A study of the sediment budget for the Waipaoa catchment, North Island, New Zealand, included evaluation of long-term rates of landsliding for six landslide-prone land systems in the catchment. The number of landslides per unit area generated by each of several storms was counted on sequential aerial photographs and correlated with the magnitude of the corresponding storm. The resulting relationships were combined with magnitude–frequency relationships derived for storms from 70- to 100-year rainfall records in the area to estimate a long-term magnitude–frequency relationship for landsliding for each land system. The long-term average values of the areal landslide frequency (number of slides per unit area per unit time) were then calculated from these relationships. The volumes of a sample of landslide scars were measured in the field, and the proportion of slides that deliver sediment to channels was determined from aerial photographs. These measurements then allowed calculation of the long-term average rate of sediment production to streams from landslides for different land systems and types of vegetation. Results suggest that shallow landslides currently contribute about 15±5% of the suspended sediment load in the Waipaoa River above the Kanakanaia gauging station, and that 75% of the sediment production from the landslides occurs during storms with recurrence intervals of less than 27 years. Reforestation of 6.3% (93 km2) of the slide-prone lands in the catchment between 1990 and 1995 resulted in a calculated decrease in slide-derived sediment of 10%. Calculations suggest that reforestation of an additional 3% (66 km2) of the catchment in areas with the most sensitive combinations of land system and storm regime could decrease the total sediment inputs from landsliding by about 20%.  相似文献   

12.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

13.
A 4000-yr history at Clark Lake reveals natural variations in sediment geochemistry and nutrient levels and anthropogenic influence on twentieth century sedimentation rates. Sediment texture and ridge and swale topography indicate that the channel system creating Clark Lake is now occupied by the Yazoo River. Between 1.24 and 0.60 m (2522–865 cal yr BP), total carbon percentages and the C/N ratio average 42% and 17, respectively. The base of the 1650-yr interval and onset of high organic activity in the lake coincides with the abandonment of the Yazoo Meander Belt. The top of the interval is marked by a drop in C/N ratio to 11 and a geochemical transition zone. No change in the rate of sediment accumulation or clay mineralogy was observed despite increased cumulative percentages of Al, Fe, K, Mg, Mn, Ca, and Na. The decrease in organic activity at 865 cal yr BP is attributed to unfavorable growth conditions related to the entrenchment of the Yazoo River and changes in the hydroperiod of the area. Significant floodplain alteration was completed in 1978, but the only major effect was increased sedimentation in the late twentieth century due to the completion of the Whittington Auxiliary Channel.  相似文献   

14.
A late Quaternary diatom stratigraphy of Lago Puyehue (40°40′ S, 72°28′ W) was examined in order to infer past limnological and climatic changes in the South-Chilean Lake District. The diatom assemblages were well preserved in a 1,122 cm long, 14C-dated sediment core spanning the last 17,900 years, and were in support of an early deglaciation of Lago Puyehue. The presence of a short cold spell in South Chile, equivalent to the Younger Dryas event in the Northern Hemisphere, the Antarctic Cold Reversal in Antarctica, or the Huelmo-Mascardi event in southern South America, was not clearly evidenced in the diatom data, although some climate instability may have occurred between 13,400 and 11,700 cal. yr. BP, and a relatively long period (between 16,850 and 12,810 cal. yr. BP) with low absolute abundances and biovolumes could be tentatively interpreted as a period of low rainfall and/or temperatures. An increase in the moisture supply to the lake was tentatively inferred at 12,810 cal. yr. BP. After 9,550 cal. yr. BP, inferred stronger and longer persisting summer stratification, may have been the result of the higher temperatures associated with an early-Holocene thermal optimum. The mid-Holocene appeared to be characterized by a decrease in precipitation, culminating around 5,000 cal. yr. BP, and rising again after 3,000 cal. yr. BP, likely associated with a previously documented lowered frequency and amplitude of El Niño events. An increase in precipitation during the late Holocene (3,000 cal. yr. BP–present) might have marked subsequent increased frequency of El Niño occurrences, leading to drier summers and slightly moister winters in the area.  相似文献   

15.
Paleohydrology studies at Mathews Pond and Whitehead Lake in northern Maine revealed synchronous changes in lake levels from about 12,000 14C yrs BP to the present. We analyzed gross sediment structure, organic and carbonate content, mineral grain size, and macrofossils of six cores from each of the two lakes, and obtained 72 radiocarbon dates. Interpretation of this paleo-environmental data suggests that the late-glacial and Younger Dryas climate was dry, and lake levels were low. Early Holocene lake levels were considerably higher but declined for an interval from about 8000 to 7200 14C yrs BP. Sediment of both lakes contains evidence of a dry period at ∼7400 14C yrs BP (8200 cal yr). Lake levels of both sites declined abruptly about 4800 14C yrs BP and remained low until 3000 14C yrs BP. Modern lake levels were achieved only within the past 600 years. The west-to-east, time-transgressive nature of lake-level changes from several sites across northeastern North America suggests periodic changes in atmospheric circulation patterns as a driving force behind observed moisture balance changes. Electronic supplementary material to this article is available at and accessible for authorized users.  相似文献   

16.
Sediment distribution was mapped by multiple corings in a small oligotrophic lake in northwestern Denmark. Sediment cores along a representative West-East transect were dated by 14C and correlated using pollen, mineral magnetics and general lithology. Estimates of whole-lake Holocene sediment accumulation were used to calculate sediment yield (terrestrial erosion). Results indicate that: 1) sediment yield was low 10000–5000 BP and increased strongly 5000–2500 BP and again 2500–1200 BP, 2) sediment focusing and waves and currents induced by strong winds were the major processes controlling sediment distribution throughout the Holocene; 3) the dominant wind direction of strong winds has been westerly throughout the Holocene; and 4) the lake was probably more productive in the last 5000 years than in the period from 10000 to 5000 BP.  相似文献   

17.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

18.
Prior to the collection of a series of sediment cores, a high- and very-high-resolution reflection seismic survey was carried out on Lago Puyehue, Lake District, South-Central Chile. The data reveal a complex bathymetry and basin structure, with three sub-basins separated by bathymetric ridges, bedrock islands and interconnected channels. The sedimentary infill reaches a thickness of >200 m. It can be sub-divided into five seismic-stratigraphic units, which are interpreted as: moraine, ice-contact or outwash deposits (Unit I), glacio-lacustrine sediments rapidly deposited in a proglacial or subglacial lake at the onset of deglaciation (Unit II), lacustrine fan deposits fed by sediment-laden meltwater streams in a proglacial lake (Unit III), distal deposits of fluvially derived sediment in an open, post-glacial lake (Unit IV) and authigenic lacustrine sediments, predominantly of biogenic origin, that accumulated in an open, post-glacial lake (Unit V). This facies succession is very similar to that observed in other glacial lakes, and minor differences are attributed to an overall higher depositional energy and higher terrigenous input caused by the strong seismic and volcanic activity in the region combined with heavy precipitation. A long sediment core (PU-II core) penetrates part of Unit V and its base is dated as 17,915 cal. yr. BP. Extrapolation of average sedimentation rates yields an age of ca. 24,750 cal. yr. BP for the base of Unit V, and of ca. 28,000 cal. yr. BP for the base of Unit IV or for the onset of open-water conditions. This is in contrast with previous glacial-history reconstructions based on terrestrial records, which date the complete deglaciation of the basin as ca. 14,600 cal. yr. BP. This discrepancy cannot be easily explained and highlights the need for more lacustrine records from this region. This is the second in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

19.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

20.
A stratigraphic diatom sequence is presented for the period from 13,870-9,170 cal BP from Kråkenes Lake, western Norway. Changes in species assemblages are discussed with reference to the changing environmental conditions in the Allerød, Younger Dryas, and the early Holocene and to the development of the aquatic ecosystem. The site is sensitive to acidification, and diatom-based transfer functions are applied to estimate the past pH status. The combination of rapid sediment accumulation together with an excellent calibrated radiocarbon chronology means that the rate of inferred pH change and associated increase in [H+] can be assessed and compared with recent, anthropogenically acidified situations.The Allerød diatom assemblages are dominated by benthic taxa particularly Fragilaria species, indicating an unproductive, alkaline, turbid, and immature system. Diatoms are absent in the early part of the Younger Dryas, but subsequently a sparse planktonic flora develops reflecting decreased turbidity and/or increased nutrient supply. A clear sequence of diatom assemblages is seen in the early Holocene. A short-lived peak of Stephanodiscus species indicating a period of increased nutrient availability occurred at ca. 11,500 cal BP. Throughout the early Holocene, acid-tolerant species increasingly replaced less acidophilous, circumneutral taxa.The lake became slightly more acid during the Allerød, but this was statistically insignificant in a trend test involving regression of pH or [H+] in relation to age. Diatom-inferred pH declined rapidly during the early Holocene period investigated (9,175-11,525 cal BP) with a statistically significant overall rate of 0.024 pH units per 100 yrs. This consisted of an older (ca. 11,525-10,255 cal BP) phase, where pH fell more rapidly at up to 0.095 pH units per 100 yrs; and a younger phase after ca. 10,500 cal BP where the pH fall was extremely slow (0.008 pH units per 100 yrs) and was not statistically significant.In the Allerød a combination of low catchment productivity together with disturbance, weathering, and minerogenic inwash ensured that the base-cation status remained relatively high. In the Holocene the catchment soils stabilised and base cations were sequestered by terrestrial vegetation and soil. This resulted in reduced base-cation leaching and this, together with the production of organic acids caused the lake to acidify, reaching an equilibrium by ca. 10,000 cal BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号