首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the present study is the petrographic and chemical characterization of the coal at the Figueira Power Plant, Paraná, Brazil, prior and after the beneficiation process and the chemical characterization of fly and bottom ashes generated in the combustion process.Petrographic characterization was carried out through maceral analysis and vitrinite reflectance measurements. Chemical characterization included proximate analysis, determination of calorific value and sulphur content, ultimate analysis, X-ray diffraction, X-ray fluorescence, Inductively Coupled Plasma — Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma — Atomic Emission Spectrometry (ICP-AES) analysis, and determination of Total Organic Carbon (TOC) content.Vitrinite reflectance analyses indicate a high volatile B/C bituminous coal (0.61 to 0.73% Rrandom). Maceral analyses show predominance of the vitrinite maceral group (51.6 to 70.9 vol.%, m.m.f). Except of the Run of mine (ROM) coal sample, the average calorific value of the coals is 5205 kcal/kg and ash yields range from 21.4 to 38.1 wt.%. The mineralogical composition (X-ray diffraction) of coals includes kaolinite, quartz, plagioclase and pyrite, whereas fly and bottom ashes are composed by mullite, ettringite, quartz, magnetite, and hematite. Analyses of major elements from coal, fly and bottom ashes indicate a high SiO2, Al2O3, and Fe2O3 content. Trace elements analysis of in-situ and ROM coals by ICP-MS and ICP-AES show highest concentration in Zn and As. Most of the toxic elements such as As, Cd, Cr, Mo, Ni, Pb, and Zn are significantly reduced by coal beneficiation. Considering the spatial distribution of trace elements in the beneficiated coal samples, which were collected over a period of three months, there appears to be little variation in Cd and Zn concentrations, whereas trace elements such as As, Mo, and Pb show a larger variation.In the fly and bottom ashes, the highest concentrations of trace elements were determined for Zn and As. When compared with trace element concentrations in the feed coal, fly ashes show a significant enrichment in most trace elements (As, B, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Tl, and Zn), suggesting a predominantly volatile nature for these elements. In contrast, Sn is distributed evenly within the different ash types, whereas U shows depleted concentration in both bottom and fly ash samples.According to the International Classification of in-seam coals the Cambuí coals are of para/ortho bituminous rank of low grade (except for the ROM sample), and are characterized by the predominance of vitrinite macerals.  相似文献   

2.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

3.
The first combined mineralogical and geochemical investigation of coal ashes from the Northwest Thrace Coal Basin, Turkey, was performed as a case study. The coal ash samples were obtained at 525 °C (group I), 750 °C (group II), and 1000 °C (group III) ashing temperatures from coal samples from the basin and were studied in terms of their mineralogical and geochemical composition using XRD and ICP-MS methods. The determination of the mineralogical composition was done for all of the groups; the geochemical analysis was carried out only for group II. In accordance with the high SiO2, Fe2O3, CaO, and SO3 content of the ash, quartz (SiO2), hematite (Fe2O3), and anhydrite (CaSO4) are the major crystalline phases for all of the ash groups. The other minerals are muscovite, thenardite, tridymite, calcite, wollastonite, anorthite, cristobalite, gibbsite, ternesite, mullite, nahcolite, and nacrite. High-temperature phases such as mullite, wollastonite, and anorthite were observed at 750 and 1000 °C. According to the (Fe2O3 + CaO + MgO+ K2O+ Na2O)/(SiO2 + Al2O3+ TiO2) ratios varying from 0.19 to 5.65, the ashes are highly prone to slagging. Compared to average values of low-rank coal ashes, the contents of V, Cr, Co, Ni, Zn, As, Rb, Sr, Mo, Cs, W, and U of the ash are higher, whereas the total content of rare earth elements (REEs) (Σ 163.7 ppm) are lower. Based on upper continental crust normalization, As, Se, Th, and U are enriched in all of the samples. The higher trace element contents in the ashes might be considered as a possible health hazard. The correlation analyses indicated that Ca is associated with anhydrite and As with hematite. The correlation analyses also showed that newly formed Al and Ca silicates may contain the elements such as Ti, K, Na, Cr, Sn, and Pb.  相似文献   

4.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

5.
Mineralogical and chemical composition of magnetic fly ash fraction   总被引:3,自引:2,他引:1  
Magnetic fractions of coal fly ashes from three power plants were obtained by wet magnetic separation method. Quartz and mullite were the crystalline minerals dominating the nonmagnetic fractions. Magnetic fractions contained magnetite, hematite, and, to a lesser extent, quartz and mullite. Iron speciation by Mössbauer spectroscopy indicated the presence of Fe2+ and Fe3+ in aluminosilicate glass in magnetic fractions apart from magnetite and hematite. Chemical analyses revealed that magnetic fractions had about 2.5 times higher concentrations of Co and one to two times higher concentrations of Ni, Cu, Zn, Mo, and Cd. The dominant magnetic minerals were ferrimagnetic, and multi domain and stable single domain grains contributed mainly to the magnetic enhancement of fly ash samples.  相似文献   

6.
This study investigated the removal efficiency of pharmaceuticals from aqueous solutions supported on chemically treated fly ash. The coal fly ash was supplied by the electric power station in Krakow, Poland. There are plenty of studies showing the utilization of fly ash as a low-cost adsorbent for wastewater containing heavy metals or dyes. Adsorption and immobilization of pharmaceuticals and personal care products on fly ash is a relatively new method but it is a very promising one. In this study, the adsorptive removal of diclofenac, ketoprofen, carbamazepine, bezafibrate, bisphenol A, 17α-ethinyl estradiol and estriol by HCl- and NaOH-treated fly ash was assessed. Chemical treatment of fly ash changed structures of particles and enhanced specific surface areas. HCl-treated fly ash was characterized by the highest BET specific surface area 47.9 m2 g?1 and unburned carbon content 8.1%. Isotherms for all compounds except for 17α-ethinyl estradiol (EE2) and estriol (E3) were linear. Higher linear regression coefficients (R 2) obtained for isotherms of EE2 and E3 show that the Freundlich model better describes their sorption. Adsorption coefficients K d varied between 109.5 (L kg?1) for bisphenol A and 471.5 (L kg?1) for bezafibrate. Freundlich constants (K F) for EE2 and E3 were 62.3 and 119.9 (µg1?1/n L1/n kg?1), respectively. Acid treatment of fly ash increased adsorption of diclofenac, ketoprofen, carbamazepine, bezafibrate and bisphenol A. Comparison of the octanol–water partitioning coefficients (log K OW) with the partitioning coefficients normalized on unburned carbon content (log K UC) revealed similarities but no strong correlation. The increasing of unburned carbon increased sorption of compounds to fly ash.  相似文献   

7.
The Imphal valley is an intramontane basin confined within an anticlinorium of several anticlines and synclines in the Disang Group of rocks of Tertiary age. This valley of more than 2 million people is occupied by fluvio-lacustrine deposits of Quaternary age and is located in the central part of the Indo-Myanmar range of Northeast India. The hydrogeochemical parameters of temperature, pH, ORP, TDS, Na, Cl, Br, Ba, B, Sr, Li, δ18O, HCO3, K, Mg, Ca, NO3, PO4, SO4 in 173 samples using ion-chromatograph, ICP (AES), ICP (OES), ICP (MS) and 37 dugwells were studied to understand the occurrence and origin of salinization process for the first time. The order of abundance of ions is identified as HCO3 > Na > Cl > Ca > Mg > K > NO3 > PO4 > Sr > Br > B>Ba > Li > SO4. Five hydrochemical facies (Na–Cl, Ca–Mg–HCO3, Na–HCO3, Ca–Mg–HCO3–Cl and Ca–Mg–Cl) represent the types of waters. The saline-dominated water types (Na–Cl and Na–HCO3) represent piedmont and the rest of the facies represent alluvial plain and flood plain groundwaters. Durov’s diagram reveales initial and intermediate stages of groundwater evolution. Isotope δ18O, Gibbs diagram and ions scatter plots suggest evaporation and crystallization processes leading to halite encrustation in the Disang shales. Negative Eh, low NO3 and the absence of SO4 indicates reduced condition coupled with rich dissolve organic matters leading to elevation of salts in soils around piedmont where the rock type is exclusively of the Disang shales. Trilinear plot, correlation matrix and water table flow analysis suggest salinization of groundwater originates in piedmont groundwater and disseminates towards alluvial plain and flood plain along the flow path.  相似文献   

8.
Fly ash is a product arising from coal combustion in thermal power plants. It represents a major source of environmental pollution. It is well known by its chemical composition rich of SiO2 and Al2O3. With the aim of preserving the environment against this contamination, fly ash was used along with the starting materials for producing glass cordierite (2MgO, 2Al2O3, 5SiO2). Four formulations were developed by mixing the silica gel, magnesium chloride (MgCl2.6H2O) and fly ash in the percentages enclosing the stoichiometry of cordierite (2MgO, 2Al2O3, 5SiO2). Different experimental techniques (DTA/TGA, X-ray diffraction, FTIR and SEM) were used to characterise the prepared formulations. The results shown that for all formulations, a cordierite phase was obtained at 1200 °C along with several secondary phases such as mullite, cristobalite, silicon oxide, enstatite and spinel. At 1300 °C, pure indialite (α-cordierite) was obtained along with a small amount of spinel. The four formulations sintered at 1200 °C exhibit a homogenous morphology and high porosity. The acicular-shaped indialite grains were observed in both formulations with excess of alumina and excess of magnesia.  相似文献   

9.
Epidote-bearing porphyritic dikes (whole rock analysis: SiO2?=?55–65 wt. %, MgO <2.1 wt. %, K2O <2.5 wt. %, Al2O3 >17 wt. %, Na2O + K2O?=?5.7–9.4 wt. %) situated in the continental margin zone, the Middle Urals, Russian Federation have been dated using SHRIMP U-Pb zircon techniques and give a Middle Devonian age of 388?±?2 Ma and 389?±?6 Ma. The porphyries contain phenocrysts of magmatic epidote (Ps?=?17–25 %), Ca- and Mn-rich (CaO >9 wt. %; MnO >6 wt. %) almandine garnet, Al-rich (Al2O3?=?12–16 wt. %) amphibole, titanite, plagioclase, biotite, muscovite, apatite, and quartz. 60 to 70 % groundmass of the porphyritic dikes consists of fine-grained albite, quartz, and K-feldspar. A variety of thermobarometric estimations, plus comparison with published experimental data indicate that the phenocryst assemblage was stable between 5 and 11 kbar and 690 to 800 °C. Oxygen fugacity was close to or greater than logfo2 = Ni-NiO + 1. Later stage formation of the quartz-feldspar groundmass took place at hypabyssal conditions, corresponding to 1 to 2 kbar and 660 to 690 °C. The porphyritic dikes are metaluminous to slightly peraluminous (ACNK?=?0.7–1.17). They are enriched in REE and depleted Nb and Ti. They show features typical of subduction-related magmas. Chemical composition and isotopic ratios of 86Sr/87Sri?=?0.709–0.720 suggest that both mantle- and deep crustal-derived materials were involved in their petrogenesis.  相似文献   

10.
Major ions showed high concentrations, ionic strength and chemical activity in the surface waters of Govind Ballabh Pant Sagar reservoir. Various geochemical ratios showed the dominance of silicate over carbonate weathering and major ions such as Na+ + K+ account for about 52 % of the cation budget. The high Na+ and K+ showed sedimentation of rock/coal particles consisting of highly weathered silicate minerals contributed by the discharge of mine water, fly ash mixing during transportation, etc. Further, Ca2+ + Mg2+/Na+ + K+ ratio was <1 (0.92) indicating the occurrence of silicate weathering in the reservoir catchment. The comparative assessment showed that the proportion of Ca2+ + Mg2+/Na+ + K+ tends to be lower along the coal mining belts compared to non-coal mining regions in the world. The Ca2+/SO4 2? ratio <1 revealed not only H2CO3 but H2SO4 also acting as a source of protons for rock weathering. The cause underlying these differences can be related directly to geological substrate and anthropogenic activities.  相似文献   

11.
燃煤固体产物的矿物组成研究   总被引:12,自引:1,他引:12  
孙俊民 《矿物学报》2001,21(1):14-18
利用X射线衍射、穆斯堡尔谱与扫描电子显微镜等方法研究中国典型燃煤煤种的燃烧产物的矿物学特征,揭示出不同化学成分以及不同类型产物中矿物组成的差异性。根据化学成分,可将燃煤固体产物分为硅铝质、铁质和钙质三组,硅铝质产物结晶相主要为莫来石和石英,而结渣中基本为莫来石;铁质产物中主要矿物包括α-Fe2O3、γ-Fe2O3与Fe3O4,其含量随锅炉燃烧湿度的变化而变化;钙质产物中矿物种类复杂,飞灰石检出石灰、石膏和石英,沾污中检出石膏、赤铁矿和石类,而结渣中还发现钙的硅酸盐矿物。上述矿物分布特征是由不同成分的硅酸盐熔体在不同热力学条件下的结晶行为所决定的。  相似文献   

12.
Deepawali is one of the main festivals for Hindu religion which falls in the period October–November every year with great fireworks display. In this study, we investigated the levels of water soluble ions and heavy metals—during the fireworks festival in Rajnandgaon, Central India. The chemical compositions and noise level distributions are reported from the sampling site. First time during Deepawali, air quality was studied in this area, The Aerosol samples of PM10 (particle aerodynamic diameter <10 μm) are collected in October 24–28, 2011. Aims of the present studies are (1) To describe the particulate concentrations and associated chemical species during Deepawali festival, (2) To recognize the noise level in Deepawali festival. For study, the samples were collected in glass fiber filter paper and analyzed for the major water soluble ions F?, Cl?, NO3 ?, SO4 2?, Na2+, NH4 +, K+, Ca2+, and Mg2+ employing ion chromatograph. Concentration of heavy metals was analyzed by ICP-MS and was observed to occur in order Fe > Zn > Pb > Ni > Cr > Cd. The result revels that all concentration are above the permissible limit fixed by CPCB, USPEA, and WHO standard. It is concluded that the burning of fireworks during Deepawali festival was the main source of heavy metals and ion.  相似文献   

13.
《Applied Geochemistry》1994,9(4):403-412
To improve our understanding of As and Se leaching from fly ash it is necessary to know the underlying geochemical processes. It has been previously suggested that sorption processes may control the partitioning of these trace elements during leaching of fly ash. In natural systems, such as soils and sediments, As and Se have been shown to interact with iron oxides at acidic pH, with CaCO3 at alkaline pH and with clay-minerals at neutral pH. By analogy, we compared the leaching of As and Se from fly ash with the sorption of arsenate and selenite on hematite, portlandite and mullite. It was possible to describe the leaching of As and Se from acidic fly ash with a simplified model of surface complexation with iron oxides. The apparent adsorption constants calculated from the leaching experiments resembled those calculated from our sorption experiments with hematite and values published for amorphous iron oxide. The leaching of As and Se from alkaline fly ash was compared with the sorption of arsenate and selenite on portlandite. A Ca-phase was shown to control the leaching process. Portlandite was shown to be an important sorbent for arsenate and to a lesser extent for selenite, at pH > 12.4. The affinity of arsenate and selenite for mullite was low. Maximum sorption was reached in the neutral pH ranges, similar to the interactions of oxyanions with kaolinite. Sorption reversibility of arsenate on all three minerals considered in this study was less, or at least slower, than that of selenite. This feature may partly explain that the fraction of As available for leaching from fly ash is generally lower.  相似文献   

14.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

15.
Leaching characteristics of fly ash   总被引:6,自引:0,他引:6  
The disposal of fly ash as a byproduct of thermic power stations, results in significant environmental problems. The leaching of coal fly ash during disposal is of concern for possible contamination, especially for the aquatic environment when ash is in contact with water. The aim of this study was to investigate the leaching behaviour of fly ashes currently disposed in Kemerkoy Power Plant (Turkey) fly-ash-holding pond. The studies were conducted with fly ashes from the electrostatic precipitators (fresh fly ash) and from the fly ash pond (pre-leached fly ash). The fly ashes has alkaline in nature and pH ranges between 11.9 to 12.2. The pre-leached fly ash exhibited lower EC values (7,400 µS) than the fresh fly ash (10,300 µS). In contrast to Fe and Pb, the elements such as Cr, Cd, Cu and Co did not leach from the fly ash. The Ca and Mn concentrations decreased with increasing temperature whereas, Na and K concentrations increased. The results showed that the most important effects of fly ash leaching were pH, Na, Ca, K, Fe, Mg, Mn and Pb.  相似文献   

16.
A new occurrence of Mn-rich rocks was discovered within the high-pressure/low-temperature metamorphic rocks on the Palos peninsula of Syros (Greece). Near the summit of Mount Príonas, a meta-conglomerate consists of calcite (~63 wt%), pink manganian phengite, blue–purple manganian aegirine–jadeite, microcline, albite and quartz. In addition, it contains abundant braunite-rich aggregates (up to ~1.5 cm in diameter) that include hollandite [(Ba0.98–1.02K<0.01Na<0.02Ca<0.03) (Mn 1.02–1.52 3+ Fe 0.38–0.88 3+ Ti0.29–0.92Mn 5.11–5.76 4+ )O16], barite and manganian hematite. Due to metamorphic recrystallization and deformation, the contacts between clasts and matrix are blurred and most clasts have lost their identity. In back-scattered electron images, many aegirine–jadeite grains appear patchy and show variable jadeite contents (Jd10–67). These pyroxenes occur in contact with either quartz or albite. Manganian phengite (3.41–3.49 Si per 11 oxygen anions) is of the 3T type and contains 1.4–2.2 wt% of Mn2O3. At the known PT conditions of high-pressure metamorphism on Syros (~1.4 GPa/ 470 °C), the mineral sub-assemblage braunite + quartz + calcite (former aragonite) suggests high oxygen fugacities relative to the HM buffer (+7 ≤ ?fO2 ≤ + 17) and relatively high CO2 fugacities. The exact origin of the conglomerate is not known, but it is assumed that the Fe–Mn-rich and the calcite-rich particles originated from different sources. Braunite has rather low contents of Cu (~0.19 wt%) and the concentrations of Co, Ni and Zn are less than 0.09 wt%. Hollandite shows even lower concentrations of these elements. Furthermore, the bulk-rock compositions of two samples are characterized by low contents of Cu, Co and Ni, suggesting a hydrothermal origin of the manganese ore. Most likely, these Fe–Mn–Si oxyhydroxide deposits consisted of ferrihydrite, todorokite, birnessite, amorphous silica (opal-A) and nontronite. Al/(Al + Fe + Mn) ratios of 0.355 and 0.600 suggest the presence of an aluminosilicate detrital component.  相似文献   

17.
The isotopic compositions of S (δ34S) and C (δ13C) were determined for the coal utilized by a power plant and for the fly ash produced as a by-product of the coal combustion in a 220-MW utility boiler. The coal samples analyzed represent different lithologies within a single mine, the coal supplied to the power plant, the pulverized feed coal, and the coal rejected by the pulverizer. The ash was collected at various stages of the ash-collection system in the plant. There is a notable enrichment in 34S from the base to the top of the coal seam in the mine, with much of the variation due to an upwards enrichment in the δ34S values of the pyrite. Variations in δ34S and in the amount of pyritic S in the coal delivered to the plant show that there was a change of source of coal supplied to the plant, between week one and week two of monitoring, supporting a previous study based on metal and sulfide geochemistry for the same plant. The fly ash has a more enriched δ34S than the pulverized coal and, in general, the δ34S is more enriched in fly ashes collected at cooler points in the ash-collection system. This pattern of δ34S suggests an increased isotopic fractionation due to temperature, with the fly ash becoming progressively depleted in 34S and the flue gas S-containing components becoming progressively enriched in 34S with increasing temperatures. Substantially less variation is seen in the C isotopes compared to S isotopes. There is little vertical variation in δ13C in the coal bed, with δ13C becoming slightly heavier towards the top of the coal seam. An 83–93% loss of solid phase C occurs during coal combustion in the transition from coal to ash owing to loss of CO2. Despite the significant difference in total C content only a small enrichment of 0.44–0.67‰ in 13C in the ash relative to the coal is observed, demonstrating that redistribution of C isotopes in the boiler and convective passes prior to the arrival of the fly ash in the ash-collections system is minor.  相似文献   

18.
Systematic changes in mineralogy, enrichment and depletion of selected elements, and mineralogical speciation of selected elements in fly ash and bottom ash samples from the Lingan Power Plant were compared to run-of-mine and pulverized feed coal from the Sydney coalfield, Nova Scotia, eastern Canada. The analytical techniques used were an electron microprobe equipped with energy and wavelength X-ray dispersive spectrometers, X-ray diffraction, neutron activation, scanning electron microscopy with energy dispersive X-ray and incident light petrography. Three types of glasses (Fe/O-rich, Fe/Al/Si/O-rich and or Al/Si/O-rich) were identified in the combustion residues; they were formed as a result of the interaction of melted pyrite and clay minerals. Compared to the feed coal, most elements were enriched 10 to20 times in the fly ash. The concentration of the elements in both the fly ash and bottom ash are comparable to coal ash that is generated by the low temperature asher in the laboratory. Some chalcophile elements such as arsenic and lead occurred as a solid solution in pyrite in the feed coal and were concentrated in the float fraction (density: <2.81 g/cm3) of the fly ash with non-crystalline Fe-oxides. X-ray mapping of arsenic in the fly ash and bottom ash indicates that arsenic was evenly distributed as oxide within the Fe/O- and Fe/Al/Si/O-rich glass and crystalline phases in the fly ash, possibly in solid solution. Arsenic is associated with Fe/O and Fe/S crystalline phases in the bottom ash.  相似文献   

19.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   

20.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号