首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于球谐函数区域电离层模型建立   总被引:1,自引:0,他引:1  
利用GPS双频观测数据建立高精度、准实时的区域电离层总电子含量(TEC)模型是电离层研究的一个重要手段。文中探讨IGS观测站数据结合4阶球谐函数建立区域电离层格网模型的方法,并对硬件延迟(DCB)和TEC建模结果的可靠性进行分析,结果表明,DCB解算精度在0.4ns以内,TEC内外精度优于1.4TECU(1TECU=1016电子数/m2)和1.5TECU,满足导航定位中电离层改正的需要。  相似文献   

2.
目前区域电离层延迟建模中,较少顾及单层模型薄层高度假设误差、投影函数选择误差、差分码估计偏差以及数学公式的模型化误差等,为了削弱这些误差对解算精度的影响,将半参数模型引入到电离层球谐函数建模中,利用半参数核估计方法,解算误差分量和球谐函数系数,并将解算结果代入区域4阶电离层球谐函数计算建模区域内电离层总电子含量(total electron content, TEC)。选取欧洲大陆区域的国际GNSS服务组织(international global navigation satellite system service, IGS)测站,分别对太阳活动低年和太阳活动高年的观测数据进行电离层建模,并采用半参数核估计法与传统最小二乘法进行建模精度的对比与分析。实验结果表明:太阳活动低年,以欧洲定轨中心发布的电离层TEC为参考,利用半参数核估计法的区域电离层建模相比于最小二乘,其精度提高了12.2%~19.0%,以IGS发布的电离层TEC为参考,其精度提高了8.3%~13.6%;太阳活动高年,利用半参数核估计法进行电离层建模相较于最小二乘法精度相当。  相似文献   

3.
针对全球电离层延迟建模中传统串行处理方法效率低等问题,研究了基于全球分布的IGS跟踪站和iGMAS跟踪站观测数据实现全球电离层建模并行解算的基本方法、流程及策略。在Bernese软件基础上研制了一套iGMAS全球电离层延迟建模软件。为了验证并行解算方法的正确性和计算效率,利用全球200个左右IGS跟踪站和6个iGMAS跟踪站2014-08-20-2014-09-06共7周的观测数据,解算了快速电离层TEC格网。与IGS,CODE以及ESA最终电离层格网比较,结果表明:基于该方法解算的快速电离层TEC格网,与CODE,ESA以及IGS最终电离层TEC格网的互差,统计不同纬度带内偏差的均方根误差,全球范围内偏差的均方根误差均在1.5~2.5 TECu之间,南北半球高纬度地区在0.5~1.5 TECu之间,所有地区均优于5 TECu,整体精度与IGS,CODE以及ESA最终电离层TEC格网精度产品相当。  相似文献   

4.
针对利用GPS观测数据提取TEC过程中最主要的误差来源硬件延迟问题,该文为了获取高精度TEC,在对双频观测数据处理时,改进了基于Hatch滤波的相位平滑伪距算法的使用方法,即双向平滑,取得较好的效果。研究采用了VTEC多项式和球冠谐分析模型来进行区域电离层建模及硬件延迟解算,经比较模型解算的硬件延迟与IGS发布值最大差异不超过1ns,其中VTEC多项式模型解80%差异值小于0.5ns,球冠谐函数模型解所有差异值均小于0.5ns。  相似文献   

5.
电离层延迟是影响导航定位精度的最主要因素。北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,对于双频接收机,可以利用不同频率信号的伪距观测数据解算得到电离层延迟值。为比较两种方法在天津地区的电离层延迟修正效果,利用NovAtel GPStation6接收机(GNSS电离层闪烁和TEC监测接收机)采集到的卫星实测数据进行计算。以国际全球导航卫星系统服务组织(IGS)发布的全球电离层格网数据为参考,对两种方法的修正效果进行比较分析。结果表明,在天津地区,利用双频观测值解算电离层延迟比Klobuchar模型计算结果更加精确,且平均每天的修正值达到IGS发布数据的82.11%,比Klobuchar模型计算值高948%   相似文献   

6.
基于球谐函数模型的GPS差分码延迟估计   总被引:1,自引:0,他引:1  
电离层延迟是GNSS观测值中最大的误差源,因此如何利用GNSS观测值确定高精度电离层模型逐渐成为实时导航、定位及大气相关研究的重要内容。在通常采用组合观测值建立模型的方法中,精确估计电离层总电子含量(TEC)的重要误差之一是差分码硬件延迟(DCBs)。为了实时得到P1、P2、C2相互间硬件差分码延迟偏差,本文采用IGS跟踪站的观测数据并利用载波平滑后的差分伪距建立观测方程,对卫星和接收机硬件差分码延迟偏差进行实时解算。经比较模型解算DCB值与IGS最大差异不超过0.8 ns,C1、P1码延迟偏差72%差异值小于0.3 ns,P1、P2的74%差异值小于0.3 ns。  相似文献   

7.
利用IGS(International GNSS Service)中心提供的中、低纬度地区平静期、活跃期观测数据,通过Klobuchar模型与双频观测模型解算电离层总电子含量(total electron content,TEC)值。采用Holt指数平滑模型对每个历元前6 d两种模型差值进行1 d预测,利用预测所得差值对Klobuchar模型第7 d的TEC值进行改进。实验结果表明,无论在电离层活跃期还是平静期,改进模型改正效果比基本模型有显著提升,改进模型能更好地反映电离层变化特性,尤其是夜间电离层变化特性。  相似文献   

8.
陈军 《测绘学报》2023,(5):868-868
电离层总电子含量(TEC)是描述电离层变化特性的关键参量,构建实时电离层TEC模型可为实时导航定位用户提供电离层延迟改正,加快精密单点定位收敛速度,实现对空间天气的精准监测。基于此,论文以构建实时电离层TEC模型为目标,从融合多源电离层数据构建电离层TEC模型和高精度电离层TEC预报模型的构建展开研究,主要研究内容及贡献如下:(1)使用不同方法评估了2002年001天-2018年365天IRI-2016模型、NeQuick2模型与IGS提供的电离层最终产品(IGSG)的精度。  相似文献   

9.
卫星导航定位中,电离层延迟是影响用户实时定位精度的重要因素之一。利用全球电离层格网(global ionosphere maps,GIM)提供电离层延迟改正是较为常用的方法,而GIM格网的精度受限于地面GNSS(global navigation satellite system)跟踪站的分布密度。利用区域内少量或1个GNSS跟踪站建立实时区域电离层总电子含量(total electron content,TEC)模型,生成高精度的实时区域电离层格网,为用户提供区域电离层延迟改正显得尤为重要。基于CODE(Center for Orbit Determination in Europe)分析中心2016—2018年995 d的GIM格网数据,分析了相邻格网点TEC的变化范围以及不同时间间隔同一格网点TEC的变化范围。结果表明,GIM在经度方向上分辨率为5°变化的均值范围为0.2~1.0 TECU,在纬度方向上分辨率为2.5°变化的均值范围为0.4~1.4 TECU,在经度和纬度分辨率均小于1°时,电离层TEC的变化小于1.0 TECU;1 h内同一格网点电离层TEC的变化均值约为1.28 TECU,30 min内同一格网点电离层TEC的变化小于1.0 TECU。该研究为小范围内(半径小于100 km)实时区域电离层TEC模型的建立及电离层格网的时间适用范围提供了有效的数据支撑和理论验证,同时对区域电离层TEC时空变化的研究、电离层TEC预报、电离层异常监测和磁暴监测等具有一定的参考意义。  相似文献   

10.
介绍计算卫星及测站硬件延迟的方法,采用低阶球谐函数模型进行系统组合硬件延迟的参数估计,选取欧洲区域内的10个IGS观测站,15 min实时解算一个VTEC模型,对解算结果的准确性和稳定性与IGS公布的结果进行比较,计算结果与IGS的计算结果一致。针对2015年3月17日发生的磁暴,利用经过硬件延迟修正后的电子含量,研究测站上空的电离层电子含量的变化情况,表明其能较好地反映磁暴现象。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号