首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An observational study of wind-induced waving of plants   总被引:1,自引:0,他引:1  
The motions of individual plants and the turbulence statistics of surface winds measured near the top of a canopy are obtained over a wheat field and a rush field. Two typical cases of motions of individual plants are presented. The displacements of the ear of wheat (the plant height is 1.0 m) showed a natural oscillation in wind speeds of 1.6 m s–1 measured at a height of 30 cm over a wheat canopy, while displacements of the stem of a rush plant were closely related to the fluctuations of surface winds in wind speeds of 1.7 m s–1 measured at the top of the rush plant. The power spectra of displacements of a rush plant seem to support the negative seven-third power hypothesis proposed by Inoue. The frequency responses of displacements of plants to fluctuations of the instantaneous momentum flux are also presented.  相似文献   

2.
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Analysis of meteorological data collected during the 1985 and 1987 Amazon Boundary Layer Experiments (ABLE 2A and 2B) indicates the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3–7 m s-1 between 300 and 1000 m increase to 10–15m s-1 shortly after sunset. The wind speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. The night-time inversion extends up to 300 m with strong vertical shear of the horizontal wind below the inversion top and uniformly strong horizontal winds above the inversion top. Frictional decoupling of the air above the inversion from the rough forest below, however, is responsible for only part of the observed increase. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. We suspect that stronger low-level winds are pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.  相似文献   

3.
The horizontal and vertical wind velocity fluctuations were measured using two sonic anemometers at a height of 135 cm above a snow surface under a transverse snow wave-forming condition. A snow-wave was formed when the wind at a height of 1 m blew at a speed of more than 7 m s−1 after an approximate accumulation of from 10 to 20 cm of new snow on a snowfield. For example, when a snow-wave had a wavelength of 10 m and a wave height of 15 to 20 cm, the measured horizontal and vertical velocity components showed that they had a frequency peak of 0.7 Hz in coherence and co-spectrum corresponding to this wavelength. The results suggest that wind turbulence and snow-wave formation interact with each other.  相似文献   

4.
卫星反演海面风场资料能够弥补海上气象测风资料缺乏的不足,对近海风能资源评估具有重要意义。通过ASCAT(Advanced Scatterometer)风速数据与美国及中国近海岸浮标测风资料的对比分析,结果表明,ASCAT风速的均方根误差为1.27 m·s-1。比较利用近海岸浮标逐小时风速及与其相匹配ASCAT瞬时风速计算的各项风能参数,得出ASCAT与浮标的平均风速和风功率密度的残差分别在±0.5 m·s-1和±50 W·m-2以内,该残差占浮标计算结果的比例分别在±8%和±12%以内。使用ASCAT风速资料拟合的Weibull分布函数与浮标的结果较吻合。因此,ASCAT风速资料也能够为海上风能资源评估提供有用的风能参数信息。最后使用ASCAT瞬时风速数据分析了中国近海10 m及70 m高度处的风能资源的空间分布特征,结果表明,台湾海峡平均风速和风功率密度最大。  相似文献   

5.
Aerodynamic roughness of the sea surface at high winds   总被引:2,自引:0,他引:2  
The role of the surface roughness in the formation of the aerodynamic friction of the water surface at high wind speeds is investigated. The study is based on a wind-over-waves coupling theory. In this theory waves provide the surface friction velocity through the form drag, while the energy input from the wind to waves depends on the friction velocity and the wind speed. The wind-over-waves coupling model is extended to high wind speeds taking into account the effect of sheltering of the short wind waves by the air-flow separation from breaking crests of longer waves. It is suggested that the momentum and energy flux from the wind to short waves locally vanishes if they are trapped into the separation bubble of breaking longer waves. At short fetches, typical for laboratory conditions, and strong winds the steep dominant wind waves break frequently and provide the major part of the total form drag through the air-flow separation from breaking crests, and the effect of short waves on the sea drag is suppressed. In this case the dependence of the drag coefficient on the wind speed is much weaker than would be expected from the standard parameterization of the roughness parameter through the Charnock relation. At long fetches, typical for the field, waves in the spectral peak break rarely and their contribution to the air-flow separation is weak. In this case the surface form drag is determined predominantly by the air-flow separation from breaking of the equilibrium range waves. As found at high wind speeds up to 60 m s−1 the modelled aerodynamic roughness is consistent with the Charnock relation, i.e. there is no saturation of the sea drag. Unlike the aerodynamic roughness, the geometrical surface roughness (height of short waves) could be saturated or even suppressed when the wind speed exceeds 30 m s−1.  相似文献   

6.
Cloud motion data were compared to ship observations over the Indian Ocean during the summer monsoon, 1 May to 31 July 1979, with the objective of using the cloud data for estimating surface wind and ultimately the wind stress on the ocean. The cloud-ship comparison indicated that the cloud motions could be used to estimate surface winds within reasonable accuracy bounds, 2.6 m s-1 r.m.s. speeds and 22° to 44° r.m.s. directions (22° r.m.s. for winds < 10 m s-1). A body of statistics is presented which can be used to construct an empirical boundary layer with the eventual goal of producing a stress analysis for the summer MONEX from cloud motion data.  相似文献   

7.
Shear echoes with various types of structures like surface layer with smooth top, short spiky top, tall spiky top and stratified layers have been seen on the monostatic system operating at the National Physical Laboratory, New Delhi. In this paper effects of surface wind speed on the formation of these structures have been considered. The data used for the purpose pertains to the period May 1977 to April 1982. It has been seen that most of the shear echo structures are formed under stable conditions with surface wind speed less than or equal to 2.5 m s−1, however, the tall spiky surface based layer structures of height more than 150 m have been seen to occur significantly in the presence of higher surface wind speeds, suggesting that strong surface winds may be responsible for turbulence in the vertical plane to more depth.  相似文献   

8.
Air flow was observed above and within canopies of a number of kinds of soybeans. The Clark cultivar and two isolines of the Harosoy cultivar were studied in 1979 and 1980, respectively. Wind speed above the canopy was measured with cup anemometers. Heated thermistor anemometers were used to measure air flow within the canopy. Above-canopy air flow was characterized in terms of the zero-plane displacement (d), roughness parameter (z o) and drag coefficient (C d). d and z o were dependent on canopy height but were independent of friction velocity in the range 0.55 to 0.75 m s?1 · C d for the various canopies ranged from 0.027 to 0.035. Greater C d values were measured over an erectophile canopy than over a planophile canopy. C d was not measurably affected by differences in leaf pubescence. Within-canopy wind profiles were measured at two locations: within and between rows. The wind profile was characterized by a region of great wind shear in the upper canopy and by a region of relatively weak wind shear in the middle canopy. Considerable spatial variability in wind speed was evident, however. This result has significant implications for canopy flow modeling efforts aimed at evaluating transport in the canopy. In the lower canopy, wind speed within a row increased with depth whereas wind speed between two rows decreased with depth. The wind speeds at the two locations tended to converge to a common value at a height near 0.10 m. The attenuation of within-canopy air flow was stronger in canopies with greater foliage density. Canopy flow attenuation seemed to decrease with increasing wind speed, suggesting that high winds distorted the shape of the canopy in such a manner that the penetration of wind into the canopy increased.  相似文献   

9.
We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0–200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the easterly wind, and the frequency of winds within 6–10 m s–1 is considerable with that of winds at > 10 m s–1. With the increase of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at > 10 m s–1. For areas of shorter offshore distance (< 100 km), surface wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant difference between wind speed probability distributions and the Weibull distribution in areas more than 100 km offshore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ratio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately described by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distribution in different sea areas.  相似文献   

10.
Mean and fluctuating wind velocities were measured above a flexible stand (weeping-lovegrass). A waving phenomenon Honami appeared over the stand during the observation period. Some spectral parameters were derived from the vertical wind fluctuations. A dependency of frequency on mean horizontal wind velocity was found. The result, n m = 0.66u, was obtained under the range of wind speeds from 0.9 m s-1 to 3.1 m s-1 just above the canopy.  相似文献   

11.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

12.
The hydrodynamic equations governing the water-level response of a lake to wind stress are inverted to determine wind stress from water-level fluctuations. In order to obtain a unique solution, the wind-stress field is represented in terms of a finite number of spatially dependent basis functions with time-dependent coefficients. The discretized version of the inverse equation is solved by a least-squares procedure to obtain the coefficients, and thereby the stress. The method is tested for several ideal cases with Lake Erie topography. Real water-level data is then used to determine hourly values of vector wind stress over Lake Erie for the period 5 May–31 October, 1979. Results are compared with measurements of wind speed and direction from buoys deployed in the lake. Calculated stress direction agrees with observed wind direction for wind speeds > 7.5 m s−1. Under neutral conditions, calculated drag coefficients increase with the wind speed from 1.53 × 10−3 for 7.5−10 m s−1 winds to 2.04 × 10−3 for 15−17.5 m s−1 winds. Drag coefficients are lower for stable conditions and higher for unstable conditions.  相似文献   

13.
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coefficient for the different seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coefficient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (-0.2 m s^-1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s^-1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s^-1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5×10^-7 N m^-3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coefficient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was confirmed via wavelet analysis. In the case of the drag coefficient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coefficient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.  相似文献   

14.
The Signature of Sea Spray in the Hexos Turbulent Heat Flux Data   总被引:7,自引:0,他引:7  
The role of sea spray intransferring heat and moisture across the air-sea interface has remained elusive. Some studies have reported that sea spray does not affect the turbulent air-sea heat fluxes for 10-m wind speeds up to at least 25 m s-1, while others have reported important spray contributions for wind speeds as low as 12 m s-1. One goal of the HEXOS (Humidity Exchange over the Sea) program was to quantify spray's contribution to the turbulent air-sea heat fluxes, but original analyses of the HEXOS flux data found the spray signal to be too small to be reliably identified amid the scatter in the data. We look at the HEXOS data again in the context of the TOGA-COARE bulk flux algorithm and a sophisticated microphysical spray model. This combination of quality data andstate-of-the-art modelling reveals a distinct spray signature in virtually all HEXOS turbulent heat flux data collected in winds of 15 m s-1 and higher. Spray effects are most evident in the latent heat flux data, where spray contributes roughly 10% of the total turbulent flux in winds of 10 m s-1 and between 10 and 40% in winds of 15–18 m s-1. The spray contribution to the total sensible heat flux is also at least 10% in winds above 15 m s-1. These results lead to a new, unified parameterization for the turbulent air-sea heat fluxes that should be especially useful in high winds because it acknowledges both the interfacial and spray routes by which the sea exchanges heat and moisture with the atmosphere.  相似文献   

15.
The calibration of a sailplane variometer to measure vertical velocity fluctuations in the atmospheric boundary layer is described. Its usefulness is demonstrated with typical results from a boundary-layer development study. The atmospheric calibrations gave the ratio of standard deviations of vertical velocity fluctuations measured by a standard tower-mounted turbulence instrument to the values measured by varioumeter as 2.5 m s−1 V−1.  相似文献   

16.
The inland and offshore propagation speeds of a sea breeze circulation cell are simulated using a three-dimensional hydrostatic model within a terrain-following coordinate system. The model includes a third-order semi-Lagrangian advection scheme, which compares well in a one-dimensional stand-alone test with the more complex Bott and Smolarkiewicz advection schemes. Two turbulence schemes are available: a local scheme by Louis (1979) and a modified non-local scheme based on Zhang and Anthes (1982). Both compare well with higher-order closure schemes using the Wangara data set for Day 33–34 (Clark et al., 1971).Two-dimensional cross-sections derived from airborne sea breeze measurements (Finkele et al. 1995) constitute the basis for comparison with two-dimensional numerical model results. The offshore sea breeze propagation speed is defined as the speed at which the seaward extent of the sea breeze grows offshore. On a study day, the offshore sea breeze propagation speed, from both measurements and model, is -3.4 m s-1. The measured inland propagation speed of the sea breeze decreased somewhat during the day. The model results show a fairly uniform inland propagation speed of 1.6 m s-1 which corresponds to the average measured value. The offshore sea breeze propagation speed is about twice the inland propagation speed for this particular case study, from both the model and measurements.The influence of the offshore geostrophic wind on the sea breeze evolution, offshore extent and inland penetration are investigated. For moderate offshore geostrophic winds (-5.0 m s-1), the offshore and inland propagation speeds are non-uniform. The offshore extent in moderate geostrophic wind conditions is similar to the offshore extent in light wind conditions (-2.5 m s-1). The inland extent is greater in light offshore geostrophic winds than in moderate ones. This suggests that the offshore extent of the sea breeze is less sensitive to the offshore geostrophic wind than its inland extent. However, these results hold only if it is possible to define an inland propagation speed. For stronger offshore geostrophic winds (-7.5 m s-1), the sea breeze is completely offshore and the inland propagation speed is ill-defined.  相似文献   

17.
Data on the relationship of the surface wind to the geostrophic wind at Porton Down, Salisbury Plain, are presented for various stability conditions and analysed in the light of the Rossbynumber similarity theory. For near-neutral conditions, the geostrophic drag coefficients for geostrophic wind speeds 5 to 15 m s-1 are close to those found by other workers but at higher speeds the values are low. Comparisons of geostrophic and radar wind speeds for ⋍900-m height, suggest that undetectably small mean cyclonic curvatures of the trajectories of the air are responsible for this departure. A value of the geostrophic drag coefficient for the open sea at wind speeds around 8 m s-1 (neutral conditions) is deduced from recent observations of the drag in relation to the surface wind, combined with the ratios of 900-mb radar wind to surface wind obtained from the North Atlantic weather ship data tabulations of Findlater et al. (1966).  相似文献   

18.
The mean wind field and the wind fluctuations observed near a controlled, heavily traveled level roadway were investigated. The mean wind field was studied in terms of velocity defects relative to the ambient mean wind. The wind fluctuations were studied in terms of energy spectra, velocity cross-spectra, excesses of velocity variances and cross-covariances over their ambient values. Two-point cross-spectra and correlations were also used to study the propagation of wind fluctuations. The influence of traffic on the ambient wind field extended vertically up to at least 4.5m above ground, and horizontally to at least 30 m downwind of the road. The vertical extension was more gradual at high cross-road winds than at low cross-road winds. The wind tended to move up as it approached the road and down as it left the road, except when the cross-road wind was low, where the downward motion was reduced or reversed. This is likely due to the buoyancy effect of the heated exhaust. The traffic effects propagated outward at about 1 m s-1. Thus at cross-road winds of less than 1 ms-1, the influence of traffic could be observed upwind of the road. When intense shear existed between the local wind field and an opposing traffic direction, large turbulent energy production resulted, generating large eddies, in additions to the high frequency (> 0.1 Hz) eddies generated by vehicular motions in the absence of intense shear. The large eddies also increased the mixing volume, so that when the ambient wind opposed the traffic direction on the upwind lanes, the pollutant concentration upwind of the road could be higher than that downwind. While the cross-covariance excesses generally agreed with the gradient transport assumption, disagreements also existed, which may not be surprising in view of the participation of large eddies in the momentum transport.  相似文献   

19.
Summary ?Microclimatological data obtained during a field experiment in the nongrowing winter period were used to study the microclimatologically stable night conditions of a 200 × 150 m miscanthus (Miscanthus cv. giganteus) stand and compared to open field conditions. The microclimatological pattern within the miscanthus canopy was characterized by long-wave radiative cooling of the plant stand and by an established temperature inversion within the canopy at calm nights. The results show that there are significant differences in air temperature and energy balance components between the open field and the miscanthus field during calm and clear nights. In general, net radiation difference during the cold and calm nights was relatively constant and about 20 W m−2 less negative in miscanthus (because of lower surface temperatures) than at the open field. Air temperature differences also remained fairly constant and were up to 3 °C lower than at the open field (at the height of 1 m). Through thermal inversion cold air accumulated in the lower parts of the canopy as shown by the vertical air temperature profiles. They showed a greater amplitude within the diurnal cycle in the miscanthus stand than in the open field. Through the onset of wind, temperature profiles changed rapidly and differences diminished. Vertical katabatic air drainage into the canopy layers was estimated indirectly by using the energy balance approach. It was calculated from the significant energy balance closure gap and showed a mean air exchange rate of up to 22 m3 m−2 h−1, related to a stand volume of 1 m2 area and 4 m height, during the mostly calm and clear nights, depending on the canopy net radiation and turbulent heat exchange forced by slight wind spells. Quantitative uncertainties in calculated cold air drainage which are introduced by the measurement method and certain assumptions in the calculations, were considered in a sensitivity analysis. In spite of these uncertainties evidence of katabatic cold air flow is given. Received July 29, 1999; revised June 11, 2001; accepted March 14, 2002  相似文献   

20.
Summer weather conditions along the west coast of Africa near 34 ° S, 18 ° E are investigated using doppler acoustic sounder profiles. Case studies were selected from a two-year record to form composite analyses over the diurnal cycle. The SE trade wind exhibited a low level jet at the level of the temperature inversion due to a sharp reversal in the thermal wind vector aloft. Mean wind speeds reached 14 m s–1 just before midnight as the surface and upper inversions strengthened. Seabreezes were categorised by the supporting gradient wind and found to have mean depths of 400 m, speeds of over 6 m s–1 at the 200 m level, and advance/retreat times of 09 hr and 16–20 hr. During seabreezes and weak on-shore gradient flow conditions, the thermal internal boundary layer (TIBL) was monitored with sounder transects in the first 12 km of the coastal zone. The growth height was observed to be 1:20 in the first 5 km and 1:50 farther inland. The sounder climatology, together with surface network and aerial survey results, illustrate the four-dimensional characteristics of trade winds and seabreezes near Cape Town.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号