首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
The application of electrical imaging and very low frequency (VLF) electromagnetics was investigated for the purpose of delineating basement fracture zones, and to show how incorporating a priori information in numerical modelling would facilitate the location of fractured zones within a basement rock more precisely. To this end, direct current (DC) dipole–dipole resistivity and VLF modelling and inversion experiments were carried out to evaluate the efficacy of the methods in detecting low-resistivity fracture zones in a typical crystalline basement rock that is favourable for groundwater accumulation. Most wells drilled in such an environment usually have low yields. Results of the numerical experiment generally indicate that fractures covered by moderate overburden, and having considerable depth, extent, and thickness compared to the depth of fracture burial, produce good responses resulting in high-resolution resistivity images. Lower resolution resistivity images were obtained as the thickness of the overburden increased. Also, the model investigations indicate that width of the fracture zone plays a major role in controlling image resolution. Conclusions from the synthetic modelling were confirmed by resistivity and VLF data gathered across a suspected fault in a hard rock terrain of southwestern Nigeria. The results from the field data are in general agreement with the numerical modelling experiments.Integración de métodos geofísicos superficiales para la detección de fracturas en macizos rocosos cristalinos del suroeste de Nigeria.  相似文献   

2.
Four magnetotelluric soundings were carried out in 1993 in the region of the Copahue active volcano located at the border between Chile and Argentina (37°45′S, 71°18′W). Three soundings were located inside the caldera of the ancient stratovolcano (east of Copahue) and the fourth outside it. The soundings inside the caldera were situated at about 6, 11, and 14 km from the volcano. Digital data were obtained covering the range of periods from 1 sec to 10,000 sec using induction coils and a flux-gate magnetometer to obtain the magnetic data and Cu-SO4Cu electrodes for electric field measurements. The apparent resistivity curves corresponding to principal directions were analyzed in conjunction with the geological background in order to eliminate distortion — which is very important in this hot volcanic region. Then, 1D modellings were performed using the “normal” curves — i.e., curves without distortions. Using the apparent resistivity curves with distortions, 2D modelling was also performed along a profile perpendicular to the regional tectonic trend suggested by MT soundings into the caldera. Results show low resistivity values of about 3-15 Ωm between 9 km to 20 km depth in the crust, suggesting high temperatures, with minimum values of about 700°C with partially melted zones in the upper crust between 9 km to 20 km depth under the caldera. The presence of a possible sulphide-carbonaceous layer (SC layer) in the upper basement could play an important role in lowering the electrical resistivities because of its high electronic conductivity.  相似文献   

3.
Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120–0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10–12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01–10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150–210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171–186]). These conductors appear to be best developed in upper crustal (1–8 km) and middle crustal (9–18 km) zones in the areas affected by volcanism. The low-resistivity anomalies are interpreted as possible magmatic features and may be related to the low-velocity zones recently detected at greater depth in the same geographic locations. The MT results, thus, provide a necessary upper crustal constraint on the anomalous zone in Chyulu Hills, and we suggest that MT is a logical compliment to seismics for the exploration of the deep crust in this volcanic-covered basement terrain. A detailed 3-D field study is recommended to gain a better understanding of the deep structure of the volcanic field.  相似文献   

4.
The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10–12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A–A′ profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.  相似文献   

5.
Denghai Bai  Maxwell A. Meju   《Tectonophysics》2003,364(3-4):135-146
Magnetotelluric (MT) geophysical profiling has been applied to the determination of the deep structure of the Longling–Ruili fault (LRF), part of a convergent strike-slip fault system, underneath thick Caenozoic cover in Ruili basin in southwestern Yunnan, China. The recorded MT data have been inverted using a two-dimensional (2-D) nonlinear conjugate gradients scheme with a variety of smooth starting models, and the resulting models show common subsurface conductivity structures that are deemed geological significant. The models show the presence of a conductive (5–60 Ω m) cover sequence that is thickest (1–1.5 km) in the centre of the basin and rapidly pinches out towards the margins. A half-graben structure is interpreted for the Ruili basin. This is underlain by about 7–10 km thick upper crustal layer of high resistivity (>200–4000 Ω m) that is dissected by steep faults, which we interpret to flatten at depth and root into an underlying mid-crustal conductive layer at about 10 km depth. The mid-crustal layer does not appear to have been severely affected by faulting; we interpret it as a zone of partial melt or intracrustal detachment. The MT models suggest SE directed thrusting of basement rocks in the area. The Longling–Ruili fault is interpreted as a NW-dipping feature bounding one of the identified upper crustal fragments underneath Ruili city. We suggest that MT imaging is a potent tool for deep subsurface mapping in this terrain.  相似文献   

6.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

7.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

8.
The natural-field magnetotelluric (MT) method has proven very useful for mapping the geothermal fields as resistivity sections. The depth of investigation of the MT method is sufficiently large to penetrate deep into the upper crust. MT soundings along two transects across Mahallat geothermal field in Iran were carried out to determine the crustal structure in the region. The selected MT profiles in the region cross over the hydrothermally altered zones and different geological structures. Data were acquired along two profiles crossing the Mahallat hot springs with a total of 28 MT stations in a frequency range of 8,000 to 0.008 Hz. Spacing between stations was kept 500 m for a good resolution. We have used the code MT2DInvMATLAB for inversion using the method of finite elements for forward modeling. Apparent resistivity and phase data of transverse electric (TE), transverse magnetic (TM), and TE + TM modes along each profile were modeled. The geothermal fluid reservoir is resolved at 1,000 to 3,000 m depth and the geothermal resource is estimated to be located at 7,000 m or deeper.  相似文献   

9.
Incised-valley fills preserved within ancient coastal to shallow-marine successions represent important archives of environmental and sea-level change. Most current knowledge about the origin of incised valleys stems from Quaternary case studies; however, research on pre-Quaternary examples can shed light on valley formation and evolution across longer timespans. This article describes different types of incised-valley fills from Lower to Middle Pennsylvanian fluvio-deltaic successions of the Breathitt Group (eastern Kentucky), accumulated in the Central Appalachian Foreland under prevalent glacioeustatic forcing driven by Gondwanan glaciations. Based on well-established criteria for their recognition, numerous incised-valley fills were identified from outcrop and subsurface data through more than 300 m of clastic successions consisting of fourth-order stratigraphic sequences stacked into third-order composite sequences. Incised-valley fills were categorized into three archetypes based on lateral extent and aspect ratio (relatively wide versus narrow valley fills), nature of infill (fully continental versus mixed marine and continental facies associations) and relationships to underlying coal zones (truncating versus non-truncating). The systematic occurrence of each incised-valley fill type at specific stratigraphic positions within every third-order sequence suggests control by a periodic allogenic factor. Valley-fill archetypes are interpreted in terms of variable accommodation-supply ratios driven by variable duration of formative base-level cycles. For example, relatively wide incised-valley fills with alluvial infill evolved during long-lived cycles whose prolonged base-level drawdown maintained low accommodation/supply ratios. Deeper valleys with low aspect ratios and mixed marine-continental infills were generated by short-lived base-level drawdown that forced higher accommodation/supply ratios. Available chronological data for the studied successions consent to estimate base-level cycles spanning 104–5 years that were likely modulated by interference patterns of orbital parameters (obliquity and eccentricity) via global climate and glacioeustatic fluctuations. This conceptual model, relating incised-valley fill morphometry and internal architecture to orbital forcing patterns, provides a possible approach to predicting and interpreting incised-valley fill variability through successions accumulated during icehouse conditions.  相似文献   

10.
Although Pingtung plain is an agriculturally developed region, its limited hydrologic conditions have restrained the maximization of its surface water resources. Due to the lack of proper management and sustainable utilization, groundwater has been overdrawn, causing serious land subsidence and seawater intrusion. The present paper presents a pilot study for artificially recharging groundwater using high-infiltration basins. Results of the geometric factor show that the large basin is ca. 6.8 times the size of the small one, with the infiltration volume almost approaching 1 m3/day/m2. In the groundwater variation, the MW-2 is located immediately below the infiltration basin; therefore, its water level rises more rapidly than that of MW-3. As for the infiltration volume, results of the experiment used the same basin since 2002, which shows that the volumes gradually decreased from 12,136 to 5,555 m3/day. This is particularly evident in 2005 when volume decrease was at a maximum ca. 2,000 m3/day. Finally, the infiltration rate decreased from 22.76 to 7.15 m/day. The difference in infiltration rate between 2003 and 2005 has a maximum variation from to 15.2 to 10.33 m/day. In 2003, the addition of sand caused the infiltration rate to fall to a minimum ca. 5.3 m/day. By extending the recharge time, the infiltration rate fell gradually similar to those identified from 2005 to 2007.  相似文献   

11.
《International Geology Review》2012,54(12):1129-1144
Groups of grabens in west Anatolia have contrasting E-W and NE-SW orientations and are the subject of debate as to their relative ages and relationships. We investigated the E-W-trending Gediz graben and its neighboring NE-SW-trending Gördes, Demirci, and Selendi grabens, which form an important graben system representative of the region. We studied gravity data from one profile and magnetotelluric (MT) data from two profiles, 73 km and 93 km long. The data supports the hypothesis that the Gediz graben was superimposed onto the (older) NE-SW grabens. 2D gravity and MT modelling revealed an undulating graben floor, varying in depth between 500 and 3000-4000 m (gravity-MT); within the graben two apparent basins 3–4 and 1.5-2.5 km deep (gravity-MT) are separated by a subsurface horst. The residual gravity map appears to indicate the continuation of NE-SW grabens from north of Gediz graben to beyond its southern border.

The MT model revealed three main zones of varying thickness within the crust. The britde upper crust comprises two zones: sedimentary fill (apparent resistivity 15-50 ohm.m) and Menderes massif basement (200 ohm.m). The third zone is highly conductive lower crust (10 ohm.m), identified by our MT modeling at an average depth of 10 km. This conductive layer was considered in conjunction with two other regional features, high heat flow values and shallow earthquake focal depths. A heat flow map shows a very high average value of 108 mWm?2 for west Anatolia and 120-300 mWm?2 for the Gediz graben area specifically, compared with the world average of 80 mWm?2. Seismological records showing shallow earthquake focal depths together with the high conductivity zone were taken to indicate a partially melted, viscoelastic lower crust.  相似文献   

12.
The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4,000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1,000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50–100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure.  相似文献   

13.
The strongest evidence up to date for a subduction zone in the Hellenic region is a clearly identified Wadati-Benioff zone below the central Aegean Sea, to a maximum depth of 180 km. Alternative seismic tomography models suggest that subduction process continues deeper than the Wadati-Benioff zone to a maximum depth of at least 600 km. So far the lack of deep electrical studies in the region impeded scientists from imposing other control factors than seismic to the proposed models for the Hellenic Subduction Zone (HSZ). A Long Period Magnetotelluric (LMT) study was carried out in the southern part of the Greek mainland to study the deep electrical characteristics of the HSZ and examine whether prominent modelled features correlate with structures identified by the seismic methods. The study comprised collection, processing and modelling of magnetotelluric (MT) data in the period range 100–10000 s from ten sites located along a 250 km NE–SW trending profile. The dimensionality of the data was examined at a pre-modelling stage and it was found that they do not exhibit three-dimensional (3-D) features. The latter enabled to construct both one-dimensional (1-D) and two-dimensional (2-D) models. The proposed geoelectric model for HSZ was based on 2-D modelling, since it had better maximum depth resolution of about 400 km, and revealed structures not detected by 1-D modelling attempts. The model structure which was related to the African and Euro-Asian lithosphere is relatively resistive (> 800 Ω-m) and has an average thickness of 150–170 km. Although the bottom of the lithosphere is adequately resolved, the Wadati-Benioff zone that delineates the top of the subducting lithospheric slab is not identified by any electrical feature. The modelled structure associated with the subducting part of the African lithosphere penetrates a relatively conductive (< 200 Ω-m) asthenosphere with a dip angle of 42°. Intermediate electrical resistivities (200–800 Ω-m) are attributed to the ascending melting part of the lithosphere below the region of the Hellenic Volcanic Arc (HVA) and to a dipping zone below the south-western part of the profile, at 170–220 km depths.  相似文献   

14.
Joint Finnish—Hungarian MT (magnetotelluric) and AMT (audiomagnetotelluric) measurements were carried out in Finland in the framework of the international ELAS project. The conditions for MT measurements are favorable at these latitudes. Five MT and 150 AMT stations gave information on the electrical conductivity distribution in the area: AMT results guided the choice of MT sites with minimal near-surface distortion effects and helped the interpretation of the MT soundings; the MT measurements indicate the presence of large conductivity anomalies and can be best interpreted as lateral induction effects of near-surface dyke structures. This result is confirmed by a certain correspondence between the directions of the maximum impedances and of the tectonic zones of the area.Any information about the upper mantle would require the use of Sq harmonics because of the crustal conductivity anomalies detected by the MT measurements.  相似文献   

15.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

16.
We present a geomorphologic analysis of an east‐west transect located east of the southern Andes of Argentina (~37°S). We observe a succession of zones that underwent erosion and deposition during the Pleistocene. If the proximal Andean foothills are incised, a proximal depozone receives sediments feeding the megafan of the Rio Colorado on the Chadileuvú plain. More distally, the abandoned palaeo‐valleys and bending of the valley floors reflect a localized uplift. Further to the east, another depozone corresponds to the Pampa Deprimida lowland. This pattern is consistent with the presence of a classical flexural geometry of the lithosphere. The distal uplift of the foreland corresponds in terms of location, length (150 km) and amplitude (240 m) to the Andean forebulge modelled by a geophysical approach. In this study, we identify the morphological imprint of this bulge and show its effect on the fluvial activity.  相似文献   

17.
航空甚低频电磁法几个问题的探讨及应用   总被引:1,自引:0,他引:1  
本文就航空甚低频(VLF)电磁法的测量方式、资料处理和山脊地形异常识别方法作了探讨。提出航空VLF电磁法主要用于地质填图,圈定那些有一定规模但导电性不一定很好的地质构造,如接触带、断层、断裂破碎带、蚀变带等,并在河北和山东等地区的应用中,取得了较好的地质效果。  相似文献   

18.
The western Pacific hosts major subduction systems such as Izu–Bonin–Mariana and Tonga–Kermadec, but also less conspicuous systems such as Yap, Mussau and Hjort trenches which constitute the young, incomplete, or ultraslow-member in the evolutionary spectrum of subduction zones. We used satellite-derived gravity data to compare well-developed and immature subduction systems. It is shown that at spatial resolution > 10–20 km or so, the satellite data have accuracy comparable to ship-board gravity measurements over intra-oceanic subduction zones. In the isostatic residual gravity anomaly map, the width of non-isostatically-compensated region of the mature subduction zones is much wider than that of immature ones. More importantly, when the gravitational attraction due to seafloor is removed, a large difference exists between the mature and immature subduction zones in the overriding plate side. Mature subduction zones exhibit broad low gravity anomalies of ~ 200–250 mGal centered at distances of 150–200 km from the trench which are not found over immature subduction zones. The cause of the broad low gravity anomalies over mature subduction zones is debatable due to lack of information on the deep crust and upper mantle structure and property. We discuss the following four causes: (1) serpentinization of the upper mantle beneath the forearc; (2) presence of partial melt in the mantle wedge caused by release of volatiles from the slab, frictional heating and distributed by mantle circulation; (3) difference in density structure between the overriding and subducting plates caused by difference in age and thermal structures with and without compositional stratification between crust and mantle; and (4) anomalous thickness of the arc not explained by isostasy. Our analysis suggests that serpentinization cannot explain the observed gravity anomaly which appears ~ 150–200 km from the trench. Although the extent and distribution of partial melt within the mantle wedge remain in question, to our best estimate, partial melting contributes little (< 50 mGal) to the total negative gravity anomaly. The difference in density structure reflecting temperature difference can only explain less than half of the low gravity anomaly. The sinking of lighter crustal material produces a large negative anomaly in the forearc but its location does not match the observed gravity anomaly. It appears that one cannot explain the total difference in gravity anomaly without invoking anomalous thickness of the arc. Although we could not identify the sole or combination of factors that give rise to the low gravity anomaly in mature subduction zones, the comparison of gravity anomalies between mature and immature subduction zones is likely to provide an important constraint for understanding the evolution and structure of subduction zones as more complementary evidences become available.  相似文献   

19.
In order to reconstruct the past variations of the Southeast Asian monsoon intensity and estimate the sedimentary system reactivity to climatic changes in Southeast Asia over the last 450 kyr, mineralogical and sedimentological analyses have been performed on the terrigenous fraction of the South China Sea sediment. End-member modelling coupled with grain size data discriminates three end-members that determine the nature and intensity of the main sediment transport vectors. Low sea-level stands are characterized by sediment reworking that allows transportation of a coarse end-member (20–40 μm) to the deep-basin. By contrast, the other end-members (4–6 μm; 9–13 μm) are controlled by the shoreline position (sea level) and/or by changes of the rivers capacity transport (monsoon). Finally, aeolian input to the northern margin of the South China Sea can be considered negligible compared to the massive fluvial input and the reworking of the sediments.  相似文献   

20.
The Gubbio fault is an active normal fault defined by an important morphological scarp and normal fault focal mechanism solutions. This fault truncates the inherited Miocene Gubbio anticline and juxtaposes Mesozoic limestones in the footwall against Quaternary lacustrine deposits in the hanging wall. The offset is more than 2000 m of geological throw accumulated during a poly-phased history, as suggested by previous works, and has generated a complex zone of carbonate-rich fault-related structures. We report the results of a multidisciplinary study that integrates detailed outcrop and petrographic analysis of two well-exposed areas along the Gubbio fault zone, geochemical analysis (fluid inclusions, stable isotopes, and trace elements) of calcite-sealed fault-related structures and fault rocks, and biostratigraphic controls. Our aims are: (i) the characterization of the deformation features and their spatial–temporal relationships, and (ii) the determination of the P/T conditions and the fluid behaviour during deformation to achieve a better understanding of fluid–rock interaction in fault zones.We show that few of the observed structures can be attributed to an inherited shortening phase while the most abundant structures and fault rocks are related to extensional tectonics. The outcropping extensional patterns formed at depths less than 2.5–3 km, in a confined fluid system isolated from meteoric water, and the fault structures are the response to a small amount of cumulated displacement, 12–19% of the total geological throw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号