首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   

2.
We investigated the composition, recycling, and mass accumulation rates of sediments along a transect in the Southern Ocean located from 66°S to 57°S at 170°W. This transect also corresponds to the location of a sediment trap mooring line. The sediments at the seven sites studied range from largely terrigenous material to nearly pure (>90%) biogenic silica. CaCO3 is a minor but persistent component at most sites. Mass accumulation rates have been determined on the basis of excess 230Th in the sediments, i.e., 230Th-normalized accumulation rates. The influence of redistribution of sediments on the sea floor has been estimated from 14C analyses. The recycling of material delivered to the sediments has been characterized on the basis of pore water studies that make extensive use of both in situ sampling and shipboard extractions. The influence of the highly variable rates of input of particulate matter that characterize much of the Southern Ocean upon pore water gradients and fluxes across the sediment water interface has been considered.We find only poor correspondence between BSiO2 burial fraction (=burial/particulate flux), a quantifiable measure of preservation efficiency, and BSiO2 particulate rain along the transect. However, preservation does appear to be closely linked to a combination of sedimentation rate and particulate rain.The burial fraction of BSiO2 is small relative to benthic rain (5–19%). Despite the small fraction buried, burial flux normalized to (sedimentation rate)1/2 appears to provide a very consistent means of predicting benthic particulate rain over a large range of rain rates, including data from a number of different studies and environments. At sites with BSiO2 rain 250 mmol m−2 yr−1 the average difference between predicted and observed rain is 25–30%. Such rain rates occur in many marine areas, particularly the Southern Ocean, with the result that this relationship potentially provides a means of estimating BSiO2 benthic rain over prolonged periods in the past on the basis of readily measured sediment parameters.At the southern-most deep ocean station, the particulate flux was characterized by an extremely high Corg/CaCO3 ratio (>10), but this high ratio does not appear to have a substantial influence on CaCO3 burial. CaCO3 is preserved in the sediments at this site despite a particulate flux with a 10-fold excess of Corg above that required for complete dissolution in the sediments. The unexpectedly high preservation of CaCO3 is due largely to the very steep Corg oxidation rate profile at this site. As a result, a large fraction of the organic matter oxidized in the sediments does so in close proximity to the sediment–water interface where most of the metabolic CO2 is neutralized by CO32− from the overlying water, rather than by the dissolution of sedimentary CaCO3.Diagenetic modeling indicates that at several of the stations, the remineralization fluxes of carbonate species across the sediment–water interface may not have been at steady state as a result of the highly pulsed nature of particulate rain in this environment. We estimate that at the time of our sampling it is possible that near-interface fluxes could have been a factor of 1.6–2 times the annual average.At every site on the transect, the burial fluxes of detrital material are substantially greater than the detrital particulate rain measured in the sediment traps, by as much as a factor of 40. Detrital burial is bimodal, being greatest at the southern and northern extremes of the transect. We postulate that the excess of burial over particulate rain in the south reflects the contribution of ice rafted debris at these high latitudes. Increases in the supply at the northern stations must have a different source. We believe that the excess at these stations is material eroded from the sea floor to the west, possibly on the Campbell Plateau, and advected by currents to the northern portion of the transect at depths below the shallow traps.  相似文献   

3.
The data on the isotopic composition of particulate organic carbon (δ13CPOC) in the Caspian Sea water in summer–autumn 2008, 2010, 2012, and 2013 are discussed in the paper. These data allowed as to reveal the predominant genesis of organic carbon in suspended particulate matter of the active seawater layer (from 0 to 40 m). The δ13CPOC =–27‰ (PDB) and δ13CPOC =–20.5‰ (PDB) values were taken as the reference data for terrigenous and planktonogenic organic matter, respectively. Seasonal (early summer, late summer, and autumn) variations in the composition of suspended particulate matter in the active sea layer were revealed. A shift of δ13CPOC towards greater values was seen in autumn (with a slight outburst in the development (bloom) of phytoplankton) in comparison with summer (with large accumulations and an extraordinary phytoplankton bloom confined to the thermocline area). The seasonal dynamics of autochthonous and allochthonous components in the suspended particulate matter of the Middle and Southern Caspian Sea was studied with the use of data on the concentration of particulate matter and chlorophyll a, the phytoplankton biomass and the POC content.  相似文献   

4.
Surface sediment from the coastal bays of Gwangyang and Masan in South Korea were analyzed for their contents and isotopic values of organic carbon and total nitrogen. The sources and diagenetic alteration of organic matter were also assessed. Total organic carbon varied from 0.22% to 3.48% (average = 1.40%, n = 75), and C/N ratios varied from 2.4 to 15.2 (average = 8.79, n = 75). δ13Corg ranged from −19.92‰ to −25.86‰ (average = −21.21‰, n = 75), and δ15NTN ranged from 8.57‰ to 3.93‰ (average = 6.49‰, n = 75). Total organic carbon in both areas was associated with grain-size, with higher contents in finer grained sediment. The high carbon content observed in Masan Bay sediment correlated with its higher C/N ratio. δ13Corg and δ15NTN varied widely, attributable to various influences such as the input of terrestrial organic matter and diagenetic alteration. The depleted δ13Corg and higher δ15NTN observed in the sediment of Gwangyang Bay reflected terrestrial supply, implying that biogeochemical processes, i.e. bacterial degradation, were more active in Masan Bay sediment, which showed less depleted δ13Corg and higher δ15NTN than Gwangyang Bay sediment. δ15NTN was the more useful indicator of biogeochemical processes in the highly anoxic sediment. These results indicate that the δ13Corg and δ15NTN of sedimentary organic matter in coastal bays can indicate the source and degree of diagenetic alteration of sedimentary organic matter.  相似文献   

5.
Relationships between organic carbon, total nitrogen and organic nitrogen concentrations and variations in δ13Corg and δ15Norg are examined in surface sediments from the eastern central Arctic Ocean and the Yermak Plateau. Removing the organic matter from samples with KOBr/KOH and determining residual as well as total N shows that there is a significant amount of bound inorganic N in the samples, which causes TOC/Ntotal ratios to be low (4–10 depending on the organic content). TOC/Norg ratios are significantly higher (8–16). This correction of organic TOC/N ratios for the presence of soil-derived bound ammonium is especially important in samples with high illite concentrations, the clay mineral mainly responsible for ammonium adsorption. The isotopic composition of the organic N fraction was estimated by determining the isotopic composition of the total and inorganic nitrogen fractions and assuming mass-balance. A strong correlation between δ15Norg values of the sediments and the nitrate concentration of surface waters indicates different relative nitrate utilization rates of the phytoplankton in various regions of the Arctic Ocean. On the Yermak Plateau, low δ15Norg values correspond to high nitrate concentrations, whereas in the central Arctic Ocean high δ15Norg values are found beneath low nitrate waters. Sediment δ13Corg values are close to −23.0‰ in the Yermak Plateau region and approximately −21.4‰ in the central Arctic Ocean. Particulate organic matter collected from meltwater ponds and ice-cores are relatively enriched in 13C (δ13Corg=−15.3 to −20.6‰) most likely due to low CO2(aq) concentrations in these environments. A maximum terrestrial contribution of 30% of the organic matter to sediments in the central Arctic Ocean is derived, based on the carbon isotope data and various assumptions about the isotopic composition of the potential endmembers.  相似文献   

6.
Data on the distribution of the zoobenthos in Kemskaya Bay (the Kem’ River estuary and the White Sea), which is subject to the strong influence of the river discharge, are presented. The number of species at the sampling stations varied from 4 to 65. The density of the communities and the zoobenthos biomass ranged from 342 ± 68 to 4293 ± 96 ind./m2 and from 0.418 ± 0.081 to 1975.22 ± 494.36 g/m2, respectively. The Shannon index values varied between 1.19 to 4.7 bit/ind. At the upper part of the estuary, detritivores dominated, while, in the central part and at outlets, sestonophages prevailed. The changes in the quantitative indices of the zoobenthos along the gradient of the water salinity were traced, and the relations of these indices with seven more environmental factors were revealed. It was found that the species composition, the biodiversity, and the trophic structure of the zoobenthos significantly correlate with some of the above mentioned parameters. Multiple regression analysis was used to assess the combined effect of the factors, and it revealed which of them play a determining role in Kemskaya Bay: for the species composition, these are the depth, the water color, and the content of total suspended matter; for the number, these are the contents of pelite and Corg in the bottom sediments. The biomass depends on the water salinity, the water chromaticity, and the Corg contents in the sediments and suspended matter. The Shannon index value is determined by the water color, the Corg contents in the sediments, and the pelite content. The calculations of the ecological stress values revealed two zones with an unstable state of the zoobenthos.  相似文献   

7.
To establish the relative importance of terrigenous and marine organic matter in the southern Beaufort Sea, we measured the concentrations and the stable isotopic compositions of organic carbon and total nitrogen in sediments and in settling particles intercepted by sediment traps. The organic carbon content of surface sediment in the Chukchi and southern Beaufort Seas ranged from 0.6 to 1.6% dry wt., without a clear geographical pattern. The CORG:NTOT ratio ranged from 7.0 to 10.4 and did not vary significantly downcore at any one station. Values of δ13CORG and δ15NTOT in the sediment samples were strongly correlated, with the highest values, indicative of a more marine contribution, in the Amundsen Gulf. In contrast, the organic matter content, elemental (CORG:NTOT ratio) and isotopic (δ13CORG and δ15NTOT) composition of the settling particles was different from and much more variable than in the bottom sediments. The isotopic signature of organic matter in the Beaufort Sea is well constrained by three distinct end-members: a labile marine component produced in situ by planktonic organisms, a refractory marine component, the end product of respiration and diagenesis, and a refractory terrigenous component. A three-component mixing model explains the scatter observed in the stable isotope signatures of the sediment trap samples and accommodates an apparent two-component mixing model of the organic matter in sediments. The suspended matter in the water column contains organic matter varying from essentially labile and marine to mostly refractory and terrigenous. As it settles through the water column, the labile marine organic matter is degraded, and its original stable isotope signature changes towards the signature of the marine refractory component. This process continues in the bottom sediment with the result that the sedimentary organic matter becomes dominated by the refractory terrigenous and marine components.  相似文献   

8.
《Marine Geology》1999,153(1-4):77-89
The sediments of the eastern Mediterranean basin contain Corg-enriched layers (sapropels) interbedded with the Corg-poor sediments which form by far the greater part of the record. While it is generally appreciated that different surface ocean productivity and bottom water conditions are necessary for the formation and preservation of these two sediment types, less attention has been paid to diagenetic effects which are an expected consequence of transitions between dramatically different bottom water oxygenation levels. A geochemical interpretation has emerged of post-depositional oxidation of the most recent sapropel (S1), initially based on the relationship of the Mn, Fe, Corg and S concentration/depth profiles observed around S1, and the characteristic shapes of these elemental profiles known from other situations. This indicates that post-depositional oxidation has removed approximately half of the visual evidence of the sapropel (∼6 cm from a total of ∼12 cm in the deep basin). The oxidation interpretation from redox-sensitive element redistribution profiles has subsequently been consolidated with evidence from pore water (O2, NO3, Mn2+ and Fe2+) studies, from characteristic solid phase Ba profiles which yield palaeoproductivity records, and from oxidation-sensitive indicator trace elements (I and Se). So far, these geochemical observations have been concentrated in the deeper central parts of the basin, where sediment accumulation rates are lower than on the basin margins, and radiocarbon dating indicates that S1 formation occurred between 5.3 and 9.0 ky (uncorrected conventional radiocarbon time). It remains to be demonstrated whether or not these times are applicable to the entire E. Mediterranean basin. The implications of these findings to guide sampling in future work on the S1 productivity episode and on older sapropels for palaeoenvironmental investigations are discussed.  相似文献   

9.
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0–2 cm) were 5–10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C26-C33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC15 to nC22 compounds. Long-chain (>C20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (<C20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk δ 13CTOCTOC. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.  相似文献   

10.
The paper presents research results on the concentrations and compositions of aliphatic and polycyclic aromatic hydrocarbons in the surface layer of bottom sediments in the Northwestern Caspian Sea (2014) and compares them to data for sediments of the Middle and Southern Caspian (2012–2013). The seepage of hydrocarbons out of the sediment mass, resulting in abnormally high concentrations of aliphatic hydrocarbons per dry weight (up to 468 μg/g), as well as within the Corg composition (up to 35.2%), is considered the main source of hydrocarbons in sediments in the surveyed area of the Northern Caspian. This is also confirmed by the absence of any correlation between the hydrocarbon and Corg distributions, as well as by the transformed oil composition of high-molecular alkanes. The distribution of markers within polycyclic aromatic hydrocarbons points to a mixed genesis—petrogenic and pyrogenic—with prevalence of the latter. Unlike the shallow-water northern part of the Caspian Sea, the content and composition of hydrocarbons in deep-seated sediments are affected by facial conditions of sedimentation and by matter exchange at the water–bottom interface. Therefore, despite high Corg concentrations (up to 9.9%), sediments in deep-water depressions are characterized by a quite low concentration of aliphatic hydrocarbons (52 μg/g on average; 0.2% of Corg) with prevailing natural allochthonous alkanes.  相似文献   

11.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

12.
The reaction pathways of nitrogen and carbon in the Framvaren Fjord (Norway) were studied through stable isotope analysis (δ15N and δ13C) of dissolved inorganic and particulate organic matter (POM). The variations in the isotopic compositions of the various C and N pools within the water column were use to evaluate the historical deposition of material to the sediments. The high δ15N-NH4+ at the O2/H2S interface, as a consequence of microbial uptake between 19 and 25 m, results in extremely depleted δ15N-particulate nitrogen (PN) of approximately 1‰ within the particulate maximum at approximately 19 m. The carbon isotopic distribution of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) within the interface suggests that the distinct microbial flora (Chromatium sp. and Chlorobium sp.) fractionate inorganic carbon to different degrees. The extremely light δ13C-POC within the interface (−31‰) appears to be a result of carbon uptake by Chromatium sp. while δ13C-POC of −12‰ is more indicative of Chlorobium sp. Nitrogen isotopic mass balance calculations suggested that approximately 75% of the material sinking to the sediments was derived from the dense particulate maximum between 19 and 25 m. The sediment distribution of nitrogen isotopes varied from 2‰ at the surface to approximately 6‰ at 30 cm. The nitrogen isotopic variations with depth may be an indicator of the depth or position of the O2/H2S interface in the fjord. Low sediment δ15N indicated that the interface was within the photic zone of the water column, while more enriched values suggested that the interface was lower in the water column potentially allowing for less fractionation during biological incorporation of dissolved inorganic nitrogen. Results indicate that the dense layers of photo-autotrophic bacteria in the upper water column impart unique carbon and nitrogen isotopic signals that help follow processes within the water column and deposition to the sediments.  相似文献   

13.
The temporal and spatial distribution of total and organic particulate matter is investigated in the Bideford River estuary. Particulate matter is homogenously distributed in both the water column and the surface sediment, due to high rates of resuspension and lateral transport. The measured mean sedimentation rate for the estuary is 183·5 g of particulate matter m?2 day?1, of which more than half is due to resuspension.The surface sediment of the estuary is quantitatively the dominant reservoir of organic matter, with an average of 902·5 g of particulate organic carbon (POC) m?2 and 119·5 g of particulate organic nitrogen (PON) m?2. Per unit surface area, the sediment contains 450 times more POC and 400 times more PON than the water column. Terrestrial erosion contributes high levels of particulate matter, both organic and inorganic, to the estuary from the surrounding watershed. Low rates of sediment export from the estuary result in the accumulation of the terrigenous material. The allochthonous input of terrigenous organic matter masks any relationship between the indigenous plant biomass and the organic matter.In the water column, a direct correlation exists between the organic matter, i.e. POC and PON, concentration and the phytoplankton biomass as measured by the plant pigments. Resuspension is responsible for the residual organic matter in the water column unaccounted for by the phytoplankton biomass.The particulate content of the water column and the surface sediment of the estuary is compared to that of the adjacent bay. Water-borne particulate matter is exported from the estuary to the bay, so that no significant differences in concentration are noted. The estuarine sediment, however, is five to six times richer in organic and silt-clay content than the bay sediment. Since sediment flux out of the estuary is restricted, the allochthonous contribution of terrigenous particulate matter to the bay sediment is minor, and the organic content of the bay sediment is directly correlated to the autochthonous plant biomass.  相似文献   

14.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

15.
In the tidally influenced Fraser River, Canada, palynological and carbon isotope (δ13Corg) signatures of channel-margin sediments are compared to environmental parameters (e.g., grain size, water salinity) to establish how the signatures vary across the tidal–fluvial transition. Palynological assemblages in the Fraser River are dominated by tree pollen, which constitutes between 85% and 95% of all assemblages. Dinocyst abundances do not exceed 2% of the total palynological assemblage, and the number and diversity of dinocysts gradually decreases landward. The calculated landward limit for dinocysts is at approximately 83 river km, which is relatively close to the upstream limit of the tidal backwater (at ∼100 km). δ13Corg values show minimal variability across the tidal–fluvial transition, and the average value is approximately −26‰. The δ13Corg signature of river sediments indicates a dominance of terrestrially sourced organic matter regardless of brackish-water and tidal influence on sediment deposition.Six palynological and geochemical trends are identified as relevant to the rock record. 1) In deltaic environments, palynological and geochemical characteristics are less useful than sedimentological and ichnological characteristics for establishing depositional conditions. 2) In marginal-marine settings, low abundances and low species diversities of dinocysts, coupled with a “terrestrial” geochemical signature (δ13Corg < −25‰) do not necessarily indicate deposition in a terrestrial environment. 3) Dinocyst abundances above 1% of the total palynomorph population can indicate a significant marine influence on sediment deposition. 4) Mud beds, preferably bioturbated, should be preferentially sampled in order to maximize palynomorph recovery. 5) Marine palynomorphs can occur, albeit in very low concentrations, to the landward limit of the tidal–backwater zone. 6) Palynological and geochemical data should be compared across the paleo-depositional environment in order to establish general trends and remove local variations caused by biases such as grain size.  相似文献   

16.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

17.
This study reports on measurements of organic carbon (Corg) and total nitrogen (Ntot) in surface sediments originating from 6 transects along the northwest European continental margin. After elimination of carbonates by an acidification technique using sulphurous acid, both elements were analysed in the same sediment sample using an elemental analyser. Corg and Ntot in the sample were comparatively low, ranging between 1 and 10 mg C and 0.2 to 1 mg N g−1 dry sediment. In a second analysis, the samples were analysed without acid addition, resulting in Ntot concentrations of 0–50% higher compared to their acidified counterparts. As a consequence, molar C/N ratios derived from the analysis of Corg and Ntot in the acidified sample ranged between 6 to 11, while the Ntot separate analysis reduced C/N ratios to 6 to 8. It is suggested that the addition of sulphurous acid to eliminate inorganic carbon volatilises nitrogenous organic matter.  相似文献   

18.
The number of bacteria in sediments, interstitial water and overlying tidal water of an oligohaline marsh system are about 109, 106 and 106 cells cm?3, respectively. Average cell size in the overlying water (about 0·06 μm3), is much smaller than that in sediments and interstitial water (about 0·18 μm3). Most bacterial cells in sediments are bound to sediment particles and less than 1% of the cells were displaced by percolating water through sediment columns. Concentration of bacteria in flooding tidal waters is generally higher than that in ebbing waters. Movement of bacterial biomass does not appear to be a significant mechanism of particulate organic transport in marsh sediments and marsh sediments do not appear to be a source of suspended bacteria for estuaries.  相似文献   

19.
The Western Desert of Egypt is one of the world’s most prolific Jurassic and Cretaceous hydrocarbon provinces. It is one of many basins that experienced organic-rich sedimentation during the late Cenomanian/early Turonian referred to as oceanic anoxic event 2 (OAE2). The Razzak #7 oil well in the Razzak Field in the northern part of the Western Desert encountered the Upper Cretaceous Abu Roash Formation. This study analyzed 23 samples from the upper “G”, “F”, and lower “E” members of the Abu Roash Formation for palynomorphs, particulate organic matter, total organic carbon (TOC) and δ13Corg in order to identify the OAE2, determine hydrocarbon source rock potential, and interpret the depositional environment. The studied samples are generally poor in palynomorphs, but show a marked biofacies change between the lower “E” member and the rest of the studied samples. Palynofacies analysis (kerogen quality and quantity) indicates the presence of oil- and gas-prone materials (kerogen types I and II/III, respectively), and implies reducing marine paleoenvironmental conditions. Detailed carbon stable isotopic and organic carbon analyses indicate that fluctuations in the δ13Corg profile across the Abu Roash upper “G”, “F”, and lower “E” members correspond well with changes in TOC values. A positive δ13Corg excursion (∼2.01‰) believed to mark the short-term global OAE2 was identified within the organic-rich shaly limestone in the basal part of the Abu Roash “F” member. This excursion also coincides with the peak TOC measurement (24.61 wt.%) in the samples.  相似文献   

20.
To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen (Corg/Norg) (mean = 24) were much higher than ratios of organic carbon to total nitrogen (Corg/Ntot) (mean=12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, 5.2‰ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, 1.4‰ heavier than those for residual organic carbon, reflecting the preferential oxidation of13C-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of Corg/Norg and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号