首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastic torsional stiffness of a structure has important influence on the seismic response of an asymmetric structure, both in the elastic and inelastic range. For elastic structures it is immaterial whether the stiffness is provided solely by structural elements in planes parallel to the direction of earthquake or by a combination of such elements in parallel and orthogonal planes. The issue of how the relative contribution of structural elements in orthogonal planes affects the torsional response of inelastic structures has been the subject of continuing study. Several researchers have noted that structural elements in orthogonal planes reduce the ductility demands in both the flexible and stiff edge elements parallel to the earthquake. Some have noted that the beneficial effect of structural elements in orthogonal planes is more pronounced when such elements remain elastic. These issues are further examined in this paper through analytical studies on the torsional response of single-storey building models. It is shown that, contrary to the findings of some previous studies, the torsional response of inelastic structures is affected primarily by the total torsional stiffness in the elastic range, and not so much by whether such stiffness is contributed solely by structural elements in parallel planes or by such elements in both parallel and orthogonal planes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
In order to carry out parametric analysis of eccentric structure–soil interaction system, an analytical model based on branch mode decoupling method is presented in this paper. The solution of system equations is implemented in the frequency domain by assuming that the superstructure maintains classic normal modes. The transfer functions of translational and torsional response are derived later. The influence of eccentricity ratio, torsional to translational frequency ratio, height-to-base ratio and foundation flexibility on the curve and peak value of transfer functions and torsionally coupled degree are analyzed and discussed systematically. Results of analysis indicate that the flexibility of foundation soil can weaken the torsional response of superstructure substantially, and the natural frequencies of interaction system reduce as the flexibility of foundation soil increase. The influence of eccentricity ratio on the peak values of transfer functions varies with the torsional to translational frequency ratio, which can be summarized as the decrease of translational component and the increase of torsional component. The translational displacement of SSI system is larger than that of fixed-base condition, while the deformation amplitude is notably reduced. The torsional response decreases as well. As the height-to-base ratio increase, the varying tendency of response is further enhanced. The torsionally coupled degree of eccentric structure is remarkably affected by the torsional to translational frequency ratio, which is significantly reduced under soft soil condition.  相似文献   

3.
双向偏心结构扭转耦联地震反应的序列最优控制   总被引:1,自引:0,他引:1  
本文分析了不对称建筑结构平移-扭转耦联振动的动力特性及地震作用下的响应;根据地震动输入结构的过程,推导出一种更为一般的最优控制算法,所获得的控制力表达式同时包括地震响应和地震激励。通过对一非规则四层框架结构的扭转耦联地震反应控制分析表明,该算法不仅能有效地控制结构的平移地震反应,而且更有效地抑制结构的扭转耦联地震反应。  相似文献   

4.
A series of parametrically defined experimental model structures has been tested under earthquake base loading using the SERC national U.K. earthquake simulator. The models have been designed with variable ratios of torsional to lateral stiffness, and with both symmetric and asymmetric mass distributions. This paper first describes the tests carried out to determine the basic dynamic model properties and the establishment of idealized analytical models which give accurate predictions of model behaviour under steady-state loading and free-vibration conditions. Secondly, a detailed discussion is made of the two highly coupled structural models having uncoupled torsional to lateral frequency ratio Rf = 1.2, commenting on the ability of the modal analysis procedures to predict accurately the maximum recorded responses. It is concluded that the theory underestimates the significance of the fundamental torsional mode of vibration in the combined structural response, and overestimates the contribution of the first lateral mode. These effects compensate each other on the side of the structure which is most severely affected by torsional response, but produce large inaccuracies on the side of the building which is commonly assumed to be affected beneficially by torsional coupling.  相似文献   

5.
This investigation deals with the measured seismic response of a six‐storey asymmetric structural model with frictional dampers. Its main objective is to experimentally prove the concept of weak torsional balance for mass‐ and stiffness‐eccentric model configurations. The goal is to control the torsional response of these asymmetric structures and to achieve, if possible, a weak form of torsional balance by placing the so‐called empirical centre of balance (ECB) of the structure at equal distance from the edges of the building plan. The control of the dynamic response of asymmetric structures is investigated herein by using steel–teflon frictional dampers. As expected from theory, experimental results show that the mean‐square and peak displacement demand at the flexible and stiff edges of the plan may be similar in magnitude if the dampers are optimally placed. Frictional dampers have proven equally effective in controlling lateral‐torsional coupling of torsionally flexible as well as stiff structures. On the other hand, it is shown that impulsive ground motions require larger frictional capacities to achieve weak torsional balance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
基础隔震单层偏心结构扭转地震反应分析   总被引:1,自引:0,他引:1  
采用微分型滞回恢复力模型模拟隔震支座的恢复力特性,对基础隔震单层偏心结构的扭转地震反应进行分析,研究隔震系统偏心距和上部结构偏心距对结构扭转反应的影响。结果表明,采用隔震技术可以显著降低隔震结构的扭转地震反应。  相似文献   

7.
广东科学中心E区隔震支座的优化布置分析   总被引:1,自引:0,他引:1  
广东科学中心E区结构体型复杂,刚度和质量在竖向分布不均匀,导致结构扭转效应比较明显.本文结合结构设计提出了五种隔震控制方案.利用SAP2000有限元分析软件,对采用不同控制方案的结构进行了模态分析和时程分析,对比分析了不同方案的控制效果.分析结果表明,采用隔震技术不仅大大降低结构的地震反应,也使结构的扭转效应得到有效的控制.依据分析结果对该工程隔震支座的布置提出建议.  相似文献   

8.
Shake table tests on a mass eccentric model with base isolation   总被引:1,自引:0,他引:1  
A mass eccentric structure is usually more seismically vulnerable than its concentric counterpart because of the coupled torsional–translational response of such structures. In this work, dynamic characteristics and response of a five‐storey benchmark model with moderate mass eccentricity were investigated using a shake table, simulating four different ground motions. The effectiveness of laminated rubber bearings (LRB) and lead‐core rubber bearings (LCRB) in protecting eccentric structures was examined and evaluated in relation to translational and torsional responses of the benchmark model. It was observed that both translational and torsional responses were significantly reduced with the addition of either a LRB or LCRB isolated system regardless of the nature of ground motion input. The LRB were identified to be more effective than LCRB in reducing model relative displacements, the relative torsional angle as well as accelerations, and therefore provided a better protection of the superstructure and its contents. On the other hand, LCRB rendered a smaller torsional angle and absolute displacement of the base isolation system, hence a more stable structural system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
不对称大底板多塔楼隔震结构的地震响应分析   总被引:1,自引:0,他引:1  
党育  杜永峰 《地震学刊》2012,(4):452-458
针对不对称大底板多塔楼隔震结构体系,通过建立地震响应的动力分析简化模型,推导出不对称大底板多塔楼隔震结构体系地震作用下的运动方程。对一实际的不对称大底板多塔楼隔震结构进行地震响应仿真分析,探讨塔楼质量偏心率和塔楼质量比对结构周期比、位移比和层剪力比的影响。结果显示,不对称大底板多塔楼隔震结构扭转角主要由隔震层产生;与不隔震结构相比,不对称大底板多塔楼隔震体系的扭转角减小,可取得较好的减震效果;塔楼与底板的位置分布和质量分布会影响体系的扭转效应和减震效果,应尽量使塔楼的质心与底板质心重合,塔楼质量分布均匀,以减小结构的扭转效应,提高减震效果。  相似文献   

10.
The accurate evaluation of code torsional provisions for plan-eccentric structures exhibiting inelastic response relies on the adoption of appropriate systems defining both the torsionally balanced (reference) and torsionally unbalanced cases. Whilst a considerable number of analytical studies of this problem have been presented in the literature, inconsistencies have arisen in their conclusions. It is evident from a review of previous studies that one factor contributing significantly to these discrepancies arises in the definition of the structural layout. An issue of particular importance is whether the transverse load-resisting elements oriented perpendicular to the assumed (lateral) direction of earthquake loading should, for purposes of realism, be included in model definitions. Given the diverse approaches in the existing literature, clarification of this issue is required in order to advance the understanding of inelastic torsional response behaviour and to assist the interpretation and comparison of previous studies. This paper aims to provide such clarification, based on analyses of a series of models defined rigorously according to code design provisions. Such models have been subjected to both uni- and bi-directional ground motion input. It is concluded that for the flexible-edge element, accurate estimates of additional ductility demand arising from torsional effects may be obtained from uni-directional models (in which both the transverse elements and the corresponding earthquake component are neglected) only for medium-period to long-period systems. Such estimates may be over-conservative for short-period systems, which constitute a large proportion of systems for which code static torsional provisions are utilized. It is further concluded that models incorporating the transverse elements but analysed under uni-directional lateral loading may underestimate by up to 100% the torsional effects in such systems, but are reasonably accurate for medium- and long-period structures.  相似文献   

11.
Approximate formulas for rotational effects in earthquake engineering   总被引:1,自引:0,他引:1  
The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.  相似文献   

12.
An attempt has been made to explore the general trends in the seismic response of plan‐asymmetric structures without any restrictions imposed by a particular code. Systems with structural elements in both orthogonal directions under bi‐directional excitation were studied. Idealized single‐storey models with bi‐axial eccentricity were employed. The systems were torsionally stiff and, in the majority of cases, mass‐eccentric. The main findings are: in general, inelastic torsional response is qualitatively similar to elastic torsional response. Quantitatively, the torsional effect on the flexible side, expressed as an increase of displacements due to torsion, decreases slightly with increasing plastic deformation, unless the plastic deformations are small. The response on the stiff side generally strongly depends on the effect of several modes of vibration and on the influence of the ground motion in the transverse direction. These influences depend on the structural and ground motion characteristics in both directions. Reduction of displacements due to torsion, typical for elastic torsionally stiff structures, usually decreases with increasing plastic deformations. As an additional effect of large plastic deformations, a flattening of the displacement envelopes in the horizontal plane usually occurs, indicating that torsional effects in the inelastic range are generally smaller than in the elastic range. The dispersion of the results of inelastic torsional response analysis is generally larger than that of elastic analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


14.
平面不规则基础隔震结构抗扭设计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对平面不规则结构在水平地震作用下的振动特性,通过调整隔震层隔震支座的布置,得到3种不同工况的隔震层刚心与上部结构质心、刚心相对位置关系,分别以楼层位移和层间位移为指标的扭转位移比,作为平面不规则基础隔震结构扭转响应指标,利用弹塑性时程分析方法,通过对3种不同工况的扭转指标对比分析研究,提出适用于平面不规则基础隔震结构的抗扭设计方法。结果表明:对于平面不规则结构,应在保证隔震层扭转位移比小于1.2的基础上,使隔震层的刚心和上部结构的刚心分别位于上部结构质心的两侧,可有效控制上部结构的扭转。  相似文献   

15.
The increasing popularity of simplified nonlinear methods in seismic design has recently led to many proposals for procedures aimed at extending pushover analysis to plan asymmetric structures. In terms of practical applications, one particularly promising approach is based on combining pushover analysis of a 3D structural model with the results of linear (modal) dynamic analysis. The effectiveness of such procedure, however, is contingent on one fundamental requirement: the elastic prediction of the envelope of lateral displacements must be conservative with respect to the actual inelastic one. This paper aims at verifying the above assumption through an extensive parametric analysis conducted with simplified single‐storey models. The main structural parameters influencing torsional response in the elastic and inelastic range of behaviour are varied, while devoting special attention to the system stiffness eccentricity and radius. The analysis clarifies the main features of inelastic torsional response of different types of building structures; in this manner, it is found that the above‐mentioned method is generally suitable for structures characterized by moderate to large torsional stiffness, whereas it cannot be recommended for extremely torsionally stiff structures, as their inelastic torsional response almost always exceeds the elastic one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A 54‐story steel, perimeter‐frame building in downtown Los Angeles, California, is identified by a wave method using records of the Northridge earthquake of 1994 (ML = 6.4, R = 32 km). The building is represented as a layered shear beam and a torsional shaft, characterized by the corresponding velocities of vertically propagating waves through the structure. The previously introduced waveform inversion algorithm is applied, which fits in the least squares sense pulses in low‐pass filtered impulse response functions computed at different stories. This paper demonstrates that layered shear beam and torsional shaft models are valid for this building, within bands that include the first five modes of vibration for each of the North–South (NS), East–West (EW), and torsional responses (0–1.7 Hz for NS and EW, and 0–3.5 Hz for the torsional response). The observed pulse travel time from ground floor to penthouse level is τ ≈1.5 s for NS and EW and τ ≈ 0.9 s for the torsional responses. The identified equivalent uniform shear beam wave velocities are βeq ≈ 140 m/s for NS and EW responses, and 260 m/s for torsion, and the apparent Q ≈ 25 for the NS and torsional, and ≈14 for the EW response. Across the layers, the wave velocity varied 90–170 m/s for the NS, 80–180 m/s for the EW, and 170–350 m/s for the torsional responses. The identification method is intended for use in structural health monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The effectiveness of the design recommendations made by various major building codes to account for torsional coupling effects is evaluated with respect to the parametric responses to earthquake ground motion of a simple single-storey asymmetric building model supported on an elastic foundation. The objectives are to determine the extent to which the response trends observed in previous studies of asymmetric rigidly based buildings are affected by changes in the flexibility of the foundation medium and to comment on and suggest necessary amendments to the design recommendations in order that suitable allowance be made for the resultant changes in the magnitude of torsional coupling effects. It is concluded that whilst the qualitative effects of torsional coupling are not affected by soil–structure interaction, their magnitude depends significantly on the frequency content of the free-field motion. The response to the El Centro earthquake record is conservatively accounted for by assuming the structure to be supported on a rigid foundation. An allowance for increased response effects due to soil–structure interaction is suggested for incorporation in the torsional design recommendations when European earthquake records are employed.  相似文献   

18.
This paper addresses some key issues which have been the subject of dispute in recent years in studying the seismic torsional response of asymmetric structures. These issues include the interpretation of the code accidental torsional provision, and the influence of the force reduction factor and of the uncoupled lateral period, on the torsional response of asymmetric structures. The responses of single-storey torsionally unbalanced structural models, designed in accordance with the torsional provisions of seismic building codes in Europe, the United States and Canada, and subjected to seismic ground motions corresponding to both the serviceability and ultimate limit states, are studied analytically. On the basis of a better understanding of the above issues as achieved in this study, the performance of code-designed torsionally unbalanced structures for both limit states is assessed. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
A study is made of the torsional response of an elastic structure placed on a rigid circular foundation supported on an elastic half-space and subjected to the action of obliquely incident plane SH waves. The problem is solved by considering first the steady-state response of a massless rigid foundation excited externally by a harmonic torque and through the soil by an obliquely incident plane SH wave. In a second stage the coupling between the structure and the soil is considered to obtain the torsional response at the base and top of the superstructure. The results obtained indicate a range of conditions under which the torsional effects will be most pronounced.  相似文献   

20.
This investigation deals with the torsional balance of the earthquake response and design of elastic asymmetric structures with frictional dampers. Plan asymmetry leads to an uneven lateral deformation demand among structural members and to unbalanced designs with larger capacities in some resisting planes. Frictional dampers are capable of controlling lateral‐torsional coupling by placing the so‐called empirical center of balance (ECB) of the structure at equal distance from all edges of the building. This rule is developed for single‐story systems with linear and inelastic behavior. However, recently obtained theoretical and experimental results demonstrate that this rule carries over to multistory structures. Results show that the peak displacement demand at the building edges and that of resisting planes equidistant from the geometric center may be similar if the damper is optimally placed. It is also shown that torsional amplification of the edge displacements of arbitrary asymmetric structures relative to the displacement of the symmetric counterparts are approximately bound by a factor of 2. Furthermore, frictional dampers are equally effective in controlling lateral‐torsional coupling of torsionally flexible as well as stiff structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号