首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet absorption by H2O and other species in the comae of comets could be detected by studying, with satellite telescope-spectrometers, the occultation of hot stars by comets. Such observations could produce the first direct detection of H2O, the fundamental parent molecule in comet comae, and give measures of molecular level populations. The first instrument suitable for such observations will be the High Resolution Spectrograph on Space Telescope and, therefore, we consider its capabilities. We have used a Haser model to estimate the molecular column densities and to predict equivalent widths for lines of H2O, OH, CO, and O as functions of time and angular distance from a comet with a high H2O production rate. We have determined the minimum detectable equivalent widths, and therefore, the maximum angular separation from such a comet at which H2O, OH, and CO could be studied. A conservative, statistical estimate shows that comets with high water production rates should pass near enough to about 10 to 100 stars suitable for absorption studies of the CX band of H2O (1240 Å). Estimated equivalent widths for CO, OH, and the resonance lines of C and O indicate that these species may also be detected.  相似文献   

2.
A fully 3-dimensional implicit numerical model for comet nucleus evolution is presented, emphasizing dust mantle formation. A spherical configuration is considered with an initial composition of amorphous H2O ice and dust, taking into account a discrete dust-grain size distribution. The model is applied to Comet 67P/Churyumov-Gerasimenko, adopting its orbital elements, rotation period and rotation axis inclination. We find that the dust mantle thickness varies over the surface from 1 cm to about 10 cm (thus lower and higher than the diurnal skin-depth, respectively). The size distribution of ejected grains varies along the orbit and is steeper than the initial one adopted for the nucleus. The crystallization front advances inward in spurts, and its depth varies between 1 and several meters. We test the effect of the thermal conductivity on the surface temperature distribution and depths of the dust mantle and crystallization front.  相似文献   

3.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Post-perihelion observed emission fluxes at 388 nm (CN) and 516 nm (C2) of the coma of comets Austin (1982g) and Bradfield (1980t) are analysed in the framework of the Haser model. Ratios of Haser model CN and C2 parent production rates with expansion velocity show that each comet behaves normally. For comet Austin (1982g), the Q CN/v and Q c2/v values decrease with increase of heliocentric distance of comet. For an assumed %; activity of the total spherical surface area of the nucleus, the water vaporization theory coupled with derived water production rates from the International Ultraviolet Explorer H and OH flux data yields a nuclear diameter of about 6 km for comet Austin (1982g). For comet Bradfield (1980t), the derived nuclear diameter is expected to be of about 1 km. In each comet, the dust mass production rates as well as ratio of dust-to-gas mass production rates decrease with increase of heliocentric distance of comet.  相似文献   

5.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

6.
Spectropolarimetric observations from 5000 to 8000 Å have been obtained for comets P/Austin (1982g) and P/Churyumov-Gerasimenko (1982f). The observations were spaced over phase angles of 50–125° for comet Austin and 10–40° for comet Churyumov-Gerasimenko. The use of spectropolarimetry allowed an evaluation of continuum polarization without molecular line contamination. Especially for comet Churyumov-Gerasimenko, the curve of polarization versus phase angle resembles curves for asteroids, where the polarization is negative (electric vector maximum parallel to the scattering plane) for phase angles less than 20° and the most negative polarization is from ?1 to ?2%. The negative polarization at backscattering angles may be due to multiple scattering in agglomerated grains, as assumed for asteroids, or to Mie scattering by small dielectric particles. If multiple scattering is important in comet dust, polarization measurements may imply a low albedo, less than 0.08. The polarization of comet Austin remained steady during a large change in the dust production rate. Both comets increased continuum flux by a factor of 2 near perihelion. The continuum of comet Churyumov-Gerasimenko had the shape of the solar spectrum with derivations less than 5%. The equivalent width of spectral features of C2, NH2, and O varied as r?2.  相似文献   

7.
A model of cometary activity is developed which integrates the feedback processes involving heat, gas, and dust transport, and dust mantle development. The model includes the effects of latitude, rotation, and spin axis orientation. Results are obtained for various grain size distributions, dust-to-ice ratios, and spin axis orientations. Attention is focused on the development, change of structure and distribution of dust mantles and their mutual interaction with ice surface temperature and gas and dust production. In this model the dust mantle controls the mechanism of gas transport not onlu by its effect on the temperature but, more importantly, by its own dynamic stability. Results suggest that an initially homogeneous short-period comet with a “cosmic” dust-to-water ice ratio, typical orbit, rotation rate, and grain size distribution would develop at most only a thin (<1 mm) cyclic mantle at all points on the nucleus. Such a fully developed temporary mantle would exist throughout the diurnal cycle only beyond ~4AU. Thus, cyclic behavior would be expected for such an idealized comet, at least for most of its lifetime. Long-term irreversible mantle development on comets with typical rotation rates was not found except regionally on Encke and also on objects with perihelia ?1.5 AU. Even in these cases, free silicate exists, after a few cycles, only as relatively rare large grains and agglomerates with radii ~1 cm scattered over exposed ice. Full mantle development would require hundreds to thousands of cycles. In the case of an initially homogeneous comet Encke, this slow incipient mantle development is shown to be the direct result of its peculiar axial orientation. High obliquity appears required for long-term mantle development for typical rotation rates and perihelia ?1.5 AU. Heat conduction into the nucleus for an incompletely mantled or bald comet has been found to be very important in maintaining relatively higher ice surface temperatures, and hence fluxes, during those portions of the diurnal and orbital cycles which would otherwise be cooler. It is also shown to be at least one cause of post perihelion brightness asymmetries, especially in lower obliquity comets. Maximum heliocentric distances at which 1-μm dust, sand, pebbles, cobbles, and boulders can be permanently ejected from the subsolar point by H2O (CO2) are (in AU): 6.9 (16.8), 5.2 (11.5), 1.8 (3.0), 0.21 (0.34) and 0.07 (0.11), respectively. A detailed anatomy of temperature, gas and dust fluxes vs latitude and longitude for a homogeneous rotating comet with fixed axis is given for comparison with future observations. Most H2O flux histories deduced from brightness data are found to be in reasonable agreement with the model, allowing for uncertainty in radius and albedo. A clear exception is Encke. It is shown that the large discrepancy between Encke's observed and model predicted fluxes, based on radar cross section, can be used to evaluate the extent of exposed ice (<10%). The model is then used to place an active area so as to explain a reported sharp drop in flux on approach to the Sun at 0.78 AU. An active area or areas, <10% of the comet's surface, centered near 65°N latitude appears indicated. Although cyclic mantles are generally indicated for the set of parameters we used, our results show that a global mantle only 1 to 3 cm thick (depending on the orbit) consisting of a full range of grain sizes can cause irresversible evolution to a noncometary body. We investigated the long-term evolution of such a postulated initially thinly mantled cometary object. It was found that after the first few passes and until the end of its dynamic lifetime the object averaged <3 × 10?12 g cm?1 sec?1 H2O flux. Therefore, if cometary objects evolve into Apollo asteroids, ice should always be accessible within 10 m of the surface despite numerous close perihelion passages. The possible impact of factors not included in the model, such as initial inhomogeneities, coma scattering of radiation, and global redistribution of ejected silicate around the nucleus, are discussed.  相似文献   

8.
We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere.  相似文献   

9.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

10.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

11.
Sekiguchi  T.  Watanabe  J.  Fukushima  H.  Yamamoto  T.  Yamamoto  N. 《Earth, Moon, and Planets》1997,78(1-3):143-148
In order to monitor the various phenomena of comets, we continuously made the near-nucleus imaging observations of comets at National Astronomical Observatory, Mitaka. Here we report on the results of the observations of two spectacular comets. One is the analysis of photometry of C2 emission images in the coma of comet Hyakutake (C/1996 B2). By comparing the production rates of C2 radicals with C2H2 molecules, we conclude that the most C2 radicals were originated from C2H2, while some of them might be produced from other parents. The second item is the analysis of the morphology of C2 emission images in the coma of comet Hale-Bopp(C/1995 O1). By applying a ring masking technique, we detected asymmetrical distribution of the C2 molecules. The results of these two comets might suggest that a portion of C2 radicals were formed by the disintegration of the small organic dust grains, like the so-called CHON particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The production rate of H2O molecules at a heliocentric distance of 1 AU for comet Halley and the abundance ratio with respect to water (H2O) of parent molecules at the cometary nucleus from the paper of Yamamoto (1987) have been used to compute the number densities of positive ions viz. H3O+, H3S+, H2CN+, H3CO+, CH3OH 2 + and NH 4 + at various cometocentric distances within 600 kms from the nucleus.The role of proton transfer reactions in producing major ionic species is discussed. A major finding of the present investigation is that NH 4 + ion which may be produced through proton transfer reactions is the most abundant ion near the nucleus of a comet unless the abundance of NH3 as a parent is abnormally low. Using the quoted value of Q(NH3)/Q(H2O) for comet Halley and the life times of NH3 and H2O molecules, the abundance ratio N(NH3)/N(H2O) is found to be one-third of that used in the present paper. The consequent proportionate decrease in the NH 4 + ions does not, however, affect its superiority in number density over other ions near the nucleus.The number density of the next most abundant ion viz. H3O+ is found to be 4 × 104 cm-3 at the nucleus of comet Halley and decreases by a factor of two only upto a distance of 600 K ms from the nucleus. The ionic mass peak recorded by VEGA and GIOTTO spacecrafts atm/q = 18 is most probably composite of the minor ionic species H2O+, as its number density = 102 cm-3 remains virtually constant in the inner coma and of NH 4 + , the number density of which at large cometocentric distances may add to the recorded peak atmlq = 18. The number densities of other major ions produced through proton transfer from H3O+ are also discussed in the region within 600 K ms from the nucleus of comet Halley.  相似文献   

13.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

14.
D. Stauffer  C.S. Kiang 《Icarus》1974,21(2):129-146
For purified binary gas mixtures like NH3H2O or HClH2O, partial pressures appreciably greater than the two saturation partial pressures are needed to condense the gas mixture into small solution droplets (“homogeneous hetero-molecular nucleation”). Thus without foreign nuclei, clouds are not as easily formed as in the theories of Lewis; the latter should be valid only if large condensation nuclei are available. We calculate here from classical homogeneous heteromolecular nucleation theory the threshold partial pressures necessary to achieve droplet nucleation for the gas mixtures NH3H2O (Jupiter,…), HClH2O (Venus), H2SO4H2O (Venus), and C2H5OHH2O (laboratory). In the last case, theory and experiment agree satisfactorily. If no “dust” particles are available as condensation nuclei, then we expect in Jupiter's atmosphere the cloud base level to be around 40 km above the 400K level instead of 10–25 km in Lewis' models (1969) (similar upward shifts for the outer Jovian planets). For Venus, our corrections make the formation of HClH2O clouds less probable for the 60-km layer at 0°C. If H2SO4 is formed by (photo-)chemical oxidation of SO2 and if clouds are formed at that level where the H2SO4 production is largest, then the cloud base levels for H2SO4H2O mixture clouds will not be shifted by our nucleation effects. For more reliable predictions, one needs more accurate data on the water vapor content of the planetary atmospheres and laboratory experiments testing the theoretically predicted nucleation behavior of these gaseous mixtures.  相似文献   

15.
Numerical simulations of the evolving activity of comet Hale-Bopp are presented, assuming a porous, spherical nucleus, 20 km in radius, made of dust and gas-laden amorphous ice. The main effects included are: crystallization of amorphous ice and release of occluded gas, condensation, sublimation and flow of gases through the pores, changing pore sizes, and flow of dust grains. The model parameters, such as initial pore size and porosity, emissivity, dust grain size, are varied in order to match the observed activity. In all cases, a sharp rise in the activity of the nucleus occurs at a large heliocentric distance pre-perihelion, marked by a few orders of magnitude increase in the CO and the CO2 fluxes and in the rate of dust emission. This is due to the onset of crystallization, advancing down to a few meters below the surface, accompanied by release of the trapped gases. A period of sustained, but variable, activity ensues. The emission of water molecules is found to surpass that of CO at a heliocentric distance of 3 AU. Thereafter the activity is largely determined by the behaviour of the dust. If a dust mantle is allowed to build up, the water production rate does not increase dramatically towards perihelion; if most of the dust is ejected, the surface activity increases rapidly, producing a very bright comet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Michael J.S. Belton 《Icarus》2010,210(2):881-897
The properties of 50 jet and jet-filament outflows from 27 active areas observed on the four comet nuclei that have been visited by spacecraft (1P/Halley, 19P/Borrelly, 81P/Wild 2, and 9P/Tempel 1) are investigated and we propose a taxonomic categorization in which there are three types of active areas: Type I that is dominated by the sublimation of H2O through the porous mantle; Type II that is controlled by the localized and persistent effusion of super-volatiles from the interior; and Type III that is characterized by episodic releases of super-volatiles.The zonally averaged distribution of active area locations associated with Type II outflows over the four comets is calculated and we find that they are distributed randomly in latitude. In longitude, the distribution shows a marginal tendency for active areas to occur more frequently in the region near the ends of the long axis or, alternatively, a tendency to avoid the region close to the ends of the intermediate axis.Combining observations of filamentary structure with exploratory hydrodynamic calculations we find that Type II outflows are likely to be relatively cold laminar flows (Re < 1000) of a mixture of CO2, CO and H2O that are highly collimated (6–10° full-cone angle) during the daytime as a result of being constrained by the ambient H2O atmosphere. We propose that they become visible as a result of the turbulent momentum flux at the base of the filamentary structure that causes the friable surface to release dust at a higher rate than in surrounding areas.We present evidence that indicates that geophysical flows occur on cometary nuclei other than 9P/Tempel 1 and discuss a possible scenario for the long-term evolution of cometary surfaces near the Sun. We conclude with an exposition of a cometary activity paradigm brought up-to-date with discoveries made with recent space missions, associated Earth-based investigations, and the results of this work.  相似文献   

17.
We present thermal evolution calculations of inhomogeneous asymmetric initial configurations of a spherical model of Comet 67P/Churyumov-Gerasimenko, using a fully 3-dimensional numerical code. The initial composition is amorphous H2O ice and dust, in a “layered-pile” configuration, where layers differing in ice/dust ratio and thermal properties extend over a fraction of the surface area and about 10 m in depth and may overlap. We analyze the effect of one such layer, as well as the combined effect of many layers, randomly distributed. We find that internal inhomogeneities affect both the surface temperature and the activity pattern of the comet. In particular, they may lead to outbursts at large heliocentric distances and also to activity on the night-side of the nucleus. The rates of ablation and depths of dust mantle and crystalline ice outer layer as functions of longitude and latitude are shown to be affected as well.  相似文献   

18.
《Planetary and Space Science》1999,47(6-7):745-763
An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H2O + ions. Finally, the two dimensional images of model column densities are compared with observations.  相似文献   

19.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

20.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号