首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The photometry of mutual occultations and eclipses of natural planetary satellites can be used to infer very accurate astrometric data. This can be achieved by processing the light curves of the satellites observed during international campaigns of photometric observations of these mutual events.
This work focuses on processing the complete data base of photometric observations of the mutual occultations and eclipses of the Galilean satellites made during the international campaign in 2002–2003. The final goal is to derive new accurate astrometric data.
We propose the most accurate photometric model of mutual events based on all the data available to date about the satellites, and develop the corresponding method for extracting astrometric data. This method is applied to derive astrometric data from photometric observations of mutual occultations and eclipses of the Galilean satellites.
We process the 371 light curves obtained during the international campaign of photometric observations of the Galilean satellites in 2002–2003. As compared with the theory, the rms 'O-C' residuals with respect to theory is equal to 0.055 and 0.064 arcsec in right ascension and declination, respectively, for the 274 best observations. Topocentric or heliocentric angular differences for satellite pairs are obtained for 119 time instants during the time period from 2002 October 10 to 2003 July 17.  相似文献   

2.
In 2009, in five Russian observatories photometric observations of Jupiter’s Galilean satellites during their mutual occultations and eclipses were carried out. Based on these observations, an original method was used to ascertain astrometric results such as the difference between the coordinates of pairs of satellites. Fifty-three phenomena were successfully observed. A total of 94 light curves of satellites were measured. The error in the coordinates of satellites due to random errors in photometry, calculated on all data obtained, was 0.041″ in right ascension and 0.046″ in declination. The discrepancies between the theory and observations in these coordinates was found to be 0.060″ and 0.057″, respectively. The results were uploaded to the common database for all observations of natural satellites of planets at the Natural Satellites Data Center (NSDC), which is available online at http://www.sai.msu.ru/neb/nss/index.htm. For the first time in the practice of photometric observations of satellites in epochs of mutual occultations and eclipses a new method of observation was tested, which eliminates from astrometric results the major systematic errors caused by an inaccurate account of the background level. The tests were conducted in the Terskol Observatory and the observatory of the Crimean laboratory of the Sternberg State Astronomical Institute of the Moscow State University. The application of the new method showed that the elimination of the background level at these observatories was carried out correctly.  相似文献   

3.
Photometry of mutual occultations and eclipses of natural planetary satellites allows accurate astrometric data to be obtained by reducing the derived light curves of the satellites. In contrast to commonly used techniques by which the differences between the topocentric angular coordinates of satellites are deduced, we suggest a new approach and develop a corresponding method. To simplify the use of photometric data, the differences between the planetocentric rectangular coordinates of the two satellites at one time are deduced in the new method from each light curve. The advantages of this approach are that after such an observational data reduction, it will suffice to consider only the planetocentric motion of the satellites to improve their orbital parameters.  相似文献   

4.
Kaare Aksnes  Fred Franklin 《Icarus》1984,60(1):180-188
A thorough search covering more than 3 years shows that nearly 300 observable mutual eclipses and occultations of the Galilean satellites occur between May 1985 and April 1986, marking this apparition as a very favorable one. This paper tabulates quantities needed to obtain light curves of all events, excluding only those taking place either too close to Jupiter or with the planet too near the Sun. Since observations are relatively short and easy to incorporate into photometric programs, we urge an active campaign so as to provide the accurate astrometric data required to improve ephemerides (which are of immediate interest to the Galileo mission to Jupiter) and to look for tidal effects in the motion of Io.  相似文献   

5.
Emel’yanov  N. V.  Arlot  J.-E.  Zhang  X. L.  Bradshaw  J.  De Cat  P.  Han  X. L.  Ivantsov  A.  Jindra  J.  Maigurova  N.  Manek  J.  Pauwels  T.  Pomazan  A.  Vingerhoets  P. 《Solar System Research》2019,53(6):436-442
Solar System Research - Photometric observations of satellites during their mutual occultations and eclipses are a valuable source of astrometric data for studying the motion of natural planetary...  相似文献   

6.
In 2006, a complete database of the international campaign on photometric observations of the Galilean satellites of Jupiter in the 1997 epoch of mutual occultations and eclipses was published. Only two thirds of the observations were considered by other authors beforehand. In this study, we have processed the whole observational database with an original technique in order to obtain the astrometric data. We determined 301 relative positions of the satellites from photometric observations performed at 50 observatories around the world. The results are put into a common database of all observations of the natural planetary satellites called the Natural Satellites Data Center (NSDC) available on the Internet site http://www.sai.msu.ru/neb/nss/index.htm. The influence of random and systematic errors on the accuracy of determining the coordinates of satellites has been analyzed. It has been shown that the largest systematic errors are caused by inaccurate elimination of the background of the photometric measurements and by the erroneous data on the albedo of satellites. The actual accuracy of astrometric results is 0.05″ and 0.07″ in right ascension and declination, respectively. New recommendations for photometric observations of satellites during the considered phenomena have been developed in order to avoid the systematic errors.  相似文献   

7.
This paper presents the final results of the campaign of photometric observations of the Galilean satellites of Jupiter at the time of their mutual occultations and eclipses at the epoch of 1997 at observatories of Kazakhstan, Russia, and Ukraine. These results essentially contribute to the worldwide database of this type. They will help to refine the models of motion of the Galilean satellites of Jupiter. A comparison is made of the obtained data with the results of the worldwide campaign of observations of mutual occultations and eclipses in 1997. From the results of these observations, the differences of planetocentric coordinates of two satellites are calculated for a sequence of instants of time. Processing is based on the theory and the model of mutual occultations and eclipses of natural planetary satellites, which were developed by one of the authors in previous papers (Emel'yanov, 1999, 2000). In this paper, some new elements of the technique were used. We estimated the accuracy of observations. The paper contains information on the observing conditions and describes briefly the instruments employed.  相似文献   

8.
Mutual events between natural satellites include mutual occultation and mutual eclipse. Mutual eclipse is another kind of mutual occultation as viewed from the center of the Sun instead of the Earth. Two mutual eclipses of J2 Europa by J1 Io (2009 Aug. 28 and Sept. 12) were observed at Yunnan Observatory during the PHEMU09 international campaign. We will calculate the astrometric data of these Galilean satellites by analyzing and fitting the light curves we obtained. The limb-darkening was considered during...  相似文献   

9.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

10.
Apostolos A. Christou 《Icarus》2005,178(1):171-178
The upcoming crossing of the Sun and the Earth through the equatorial plane of the planet Uranus presents an opportunity to observe mutual eclipses and occultations of the uranian satellites. We present predictions for 321 such events from 2006 to 2010. 230 of these events are “nominal” i.e. they are predicted to occur based on the currently available ephemeris while a further 91 “grazing” events are allowable given the positional uncertainties of the satellites. Taking into account the statistical frequency of events that occur too close to the planet, during solar conjunction or are too “shallow” to observe, we conclude that about 150 events should be detectable from different longitudes around the world. We argue that a worldwide campaign of photometric observations of these events will yield, as in the case of the jovian and saturnian systems, high-precision astrometric information on the satellites toward improving their ephemerides as well as the system constants (satellite masses, uranian zonal harmonics, etc.). In addition, mathematical inversion of the lightcurves should permit, subject to the photometric quality and number of observed events, mapping of albedo variegations over the satellite hemispheres that were in darkness during the Voyager 2 encounter with the uranian system in 1985/1986.  相似文献   

11.
K. Aksnes  F.A. Franklin 《Icarus》1978,34(1):188-193
In this paper, we first predict eclipses and occultations of the Galilean satellites in 1979 and find that, although circumstances are generally poor, about 75 events are observable. We have then made a special point of including 40 eclipses of J5 (Amalthea) by the Galilean satellites in the hope that both visual and far-infrared light curves can be obtained—the former giving accurate astrometric information for J5, and the latter possibly bearing on its surface stucture or composition.  相似文献   

12.
We carried out observations of mutual events in Saturn’s system of satellites as part of the PHESAT95 International Program. Three light curves of these events were obtained. We developed a technique of allowance for the influence of the law of light reflection from the surfaces of Saturn’s satellites, photometric nonuniformity of their surfaces, the phase effect, and the illumination distribution in the satellite penumbra (given the brightness distribution over the solar disk) on the light curve of an occultation or eclipse of one satellite by another. This technique is used to interpret our observations of these events and to determine the minimum separations between satellites or between a satellite and the shadow center of another satellite and the corresponding timings.  相似文献   

13.
Noteworthy phenomena, viz., mutual occultations and eclipses in the system of Jupiter’s Galilean satellites and in the system of Saturn’s principal satellites, will occur in 2009. The relatively simple photometry of these phenomena makes it possible to obtain positional data at a higher accuracy than can be achieved in regular astrometric observations. The visibility conditions for the satellites are described here and observational recommendations are given. The ephemerides of these phenomena are available via the Internet from the MULTI-SAT ephemerides server at http:/www.sai.msu.ru/neb/nss/index.htm.  相似文献   

14.
Salient features of the analysis of the mutual event light curves of planetary satellites are presented. The need to carefully evaluate the flux contribution of the occulting/eclipsing satellite to the total flux is illustrated. Albedo variations on the satellites will produce signatures on the mutual event light curves. The partial events of the upcoming mutual event series of the uranian satellites can be modeled taking into account the albedo variations inferred from the maps of the southern regions imaged by Voyager 2 when only these regions are occulted/eclipsed. This will enable a robust determination of the astrometric parameters. The shape and asymmetry of the mutual event light curves along with the rotational light curves of the satellites obtained simultaneously during the planet's equinox crossing period can be utilized to obtain a coarse albedo map of the northern hemisphere of the satellites. These studies will also help in investigating possible changes in the known southern regions since the 1986 encounter of Voyager 2.  相似文献   

15.
K. Aksnes  F.A. Franklin 《Icarus》1978,34(1):194-207
Using two sets of orbital elements and the radii of the Saturnian satellites 1 (Mimas) through 7 (Hyperion), we find that from October 1979 until August 1980 nearly 300 mutual eclipses and occultations involving these bodies will occur. To allow for the expected errors in the satellite ephemerides, we repeat these calculations in order to obtain the additional events that occur when all satellite radii (save Titan's) are increased by 1000 km. A third listing predicts eclipses of satellites by (the shadow of) the ring. Photometric observations of a large number of these events will add much precise information to our knowledge of the Saturnian system at a critical time.  相似文献   

16.
Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.  相似文献   

17.
The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large asteroids were determined this way. One of the principal techniques for Earth-based measurement of the masses of asteroids involves astrometric observations of binary asteroids. The determination of relative coordinates is made rather difficult by the apparent proximity of components. The success of these efforts depends on the availability of instrumentation and the expertise of observers skilled in adaptive optics and speckle interferometry. Collaboration between different research teams and observers is absolutely necessary.  相似文献   

18.
Results of the observations of mutual eclipses of Galilean satellites observed from the Vainu Bappu Observatory during 1985 are presented. Theoretical models assuming a uniform disc, Lambert’s law and Lommel-Seeliger’s law describing the scattering characteristics of the surface of the eclipsed satellite were used to fit the observations. Light curves of the 1E2 event on 1985 September 24 and the 3E1 event on 1985 October 24 observed from VBO and published light curves of the 1E2 event on 1985 September 14, the 3E1 event on 1985 September 26 and the 2E1 event on 1985 October 28 (Arlotet al 1989) were fitted with theoretical light curves using Marquardt’s algorithm. The best fitting was obtained using Lommel-Seeliger’s law to describe the scattering over the surface of Io and Europa. During the fitting, a parameterδxshift which shifts the theoretical light curve along the direction of relative motion of the eclipsed satellite with respect to the shadow centre, on the sky plane (as seen from the Sun) was determined along with the impact parameter. In absence of other sources like prominent surface features or non perfect sky conditions which could lead to asymmetric light curves,δxshift would be a measure of the phase correction (Aksnes, Franklin & Magnusson 1986) with an accuracy as that of the midtime. Heliocentric Δα cos (δ) and gDδ at mid times derived from fitted impact parameters are reported  相似文献   

19.
We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.  相似文献   

20.
The occurrence of the Earth and Sun transits through the equatorial plane of Uranus will bring us the opportunity for observations only possible at that time: mutual events of the satellites, search for new faint satellites and measurement of the thickness of the rings.The predictions of the mutual events need a theoretical model of the motion of the satellites. The calculated occurrences of the occultations and eclipses highly depend on the model since these predictions are very sensitive to the relative positions of the satellites. A difference of 0.05 arcsec in latitude may make an event inexistent and the accuracy of the theoretical models is around 0.1 arcsec.In order to be sure of the occurrence of each event, we made the predictions using three theoretical models: the first one is GUST86 made by Laskar and Jacobson in 1986, the second is GUST06 based on the former model fitted by Emelianov on new observations and the third one is LA06 based on a brand new theory with an accuracy 10 times better than GUST and fitted on recent observations made since 1950.This comparison shows that some events predicted with one model are not predicted using another one. We try to select the events which will occur surely in order to help the observers to catch the best phenomena.The search for new satellites and the measurement of the thickness of the rings are planned by means of observations at the time of the transit of the Earth in the ring plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号