首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

2.
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m~2) for bare soil plots and from 5.61 to 84.58 g/(min·m~2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.  相似文献   

3.
Under global warming, storm events tend to intensify, particularly in monsoon-affected regions.As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage(BL),conventional tillage(CT) and seasonal no-tillage ridges(SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three practices, BL causedrelatively high surface runoff and soil erosion,followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis(CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.  相似文献   

4.
Rainfall, runoff(surface runoff and interflow) and soil loss were recorded from 2002 to2005 in an experiment with four treatments on sloping red soil land in southern China. Treatments consisted of bare sloping ground(control check, CK),interplanting with soybean in spring or radish in autumn(I), level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace)(II), and level terraces of orchards with Bahia grass planted on the riser(III). The surface runoff and erosion in treatment II and III during the four years were low despite the occurrence of potentially erosive rains. By contrast, the CK plot had both the highest surface runoff coefficient and the highest sediment yield among all the plots. The surface runoff and soil erosion of the CK plot significantly differed from that of the treatment plots(p 0.05). Additionally,Significant differences between the interflow of the CK plot and that of the treatment plots was found from April to August(p 0.05). However, no significant differences between the CK and treatment plots were found from January to March and September to December. The order of the plots in terms of surface runoff coefficients and soil losses was: CK I III II, whereas their order in terms of interflow was II III I CK. The effects of treatment II were excellent, indicating that level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace) can be an excellent practice for soil and water conservation on sloping red soil land. Soil loss in southern China can be reduced through the widespread use of this approach.  相似文献   

5.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

6.
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Six-years after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30% vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100% ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover, while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover, respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient. Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4 folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.  相似文献   

7.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

8.
锡林郭勒盟为我国北方典型草原区,草地的退化与恢复影响生态系统的防风固沙服务功能。为了便于制定区域生态恢复的防治措施,实现草地生态系统的可持续发展与防治土壤风蚀危害,本文基于气象、遥感数据,运用RWEQ(Revised Wind Erosion Equation)模型,结合锡林郭勒盟的草地覆盖度变化对20世纪90年代以来的防风固沙服务功能的时空变化趋势进行了定量评估,并分析了草地覆盖度变化对防风固沙服务功能的影响。研究表明:锡林郭勒盟土壤风蚀以微度和轻度侵蚀为主,主要集中在植被盖度较高、降水相对较多,风场强度相对较低的东部、中部和南部地区;中度以上区域主要集中在西部的荒漠草原区与浑善达克沙地区,且侵蚀面积随侵蚀强度的增加而递减;防风固沙服务功能量的分布趋势与土壤风蚀模数的分布趋势基本一致;防风固沙服务功能保有率的分布特征与植被盖度的分布特征基本一致,表现为由西北到东南逐渐增加的趋势;在气候暖干化背景下,受京津风沙源治理工程实施的影响,以微度和轻度侵蚀为主的草地覆盖度减小区转为以微度和轻度为主的覆盖度增加区,轻度和中度以上侵蚀为主的草地覆盖度减小区转为基本持衡区;草地覆盖度的降低与增加对土壤风蚀的加剧和抑制作用明显,大部分地区的防风固沙服务功能保有率的下降(提升)与风蚀季节草地覆盖度的减小与提升呈显著正相关(r0.6,p0.05)。  相似文献   

9.
1 INTRODUCTIONThelocalprecipitationismostimportantavailablefreshwatersourceindeserts.TheTaklimakanDesertbelongstoanextremearidbelt.Accordingtoafewyears’limitedobservationdata,itisestimatedthattheprecipitationshouldbeintherangeof30-50mmannually.Howev…  相似文献   

10.
Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient, rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient, when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases, while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energy increases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.  相似文献   

11.
The water erosion prediction project(WEPP) model is a popular water erosion prediction tool developed on the basis of the physical processes of water erosion.Although WEPP has been widely used around the world,its application in China is still insufficient.In this study,the performance of WEPP used to estimate the runoff and soil loss on purple soil(Calcaric Regosols in FAO taxonomy) sloping cropland was assessed with the data from runoff plots under simulated rainfall conditions.Based on measured soil properties,runoff and erosion parameters,namely effective hydraulic conductivity,inter-rill erodibility,rill erodibility,and critical shear stress were determined to be 2.68 mm h-1,5.54 × 106 kg s-1 m 4,0.027 s m 1 and 3.5 Pa,respectively,by using the recommended equations in the WEPP user manual.The simulated results were not good due to the low Nash efficiency of 0.41 for runoff and negative Nash efficiency for soil loss.After the four parameters were calibrated,WEPP performed better for soil loss prediction with a Nash efficiency of 0.76.The different results indicated that the equations recommended by WEPP to calculate parameters such as erodiblity and critical shear stress are not suitable for the purple soil areas,Sichuan Province,China.Although the predicted results can be accepted by optimizing the runoff and erosion parameters,more research related to the determination of erodibility and critical sheer stress must be conducted to improve the application of WEPP in the purple soil areas.  相似文献   

12.
Soil erosion by water under forest cover is a serious problem in southern China. A comparative study was carried out on the use of leaf area index (LAI) and vegetation fractional coverage (VFC) in quantifying soil loss under vegetation cover. Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates (40 mm h−1 and 54 mm h−1) using a portable rainfall simulator. Runoff rate, sediment concentration and soil loss rate were measured at relatively runoff stable state. Significant negative exponential relationship (p < 0.05, R2 = 0.83) and linear relationship (p < 0.05, R2 = 0.84) were obtained between LAI and sediment concentration, while no significant relationship existed between VFC and sediment concentration. The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration. LAI could better quantify such a role than VFC. However, neither LAI nor VFC could explain runoff rate or soil loss rate. Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.  相似文献   

13.
六盘水市土壤侵蚀时空特征及影响因素分析   总被引:1,自引:0,他引:1  
六盘水市是我国生态地位极其重要,水土流失又较为严重的城市。近些年,六盘水市实施了一系列生态工程,为了定量分析六盘水市土壤侵蚀状况及其影响因素,本文基于RUSLE模型,利用降雨数据、遥感影像数据、土地利用数据等,对贵州省六盘水市1990-2015年土壤侵蚀模数和土壤侵蚀量进行定量模拟,分析其时空动态变化,利用地理探测器定量分析影响因素,并进行空间相关性分析,结果表明: ① 六盘水市土壤侵蚀以微度和中度侵蚀为主。土壤侵蚀严重地区主要分布在北盘江流域与南盘江流域交界处以及喀斯特山地地区,煤矿开采使植被覆盖等抑制土壤侵蚀因子减少作用,使局部地区土壤侵蚀程度加剧。② 1990-2010年平均土壤侵蚀模数整体为下降趋势,2010-2015年为上升趋势。其中2000年平均土壤侵蚀模数最大,2010年平均土壤侵蚀模数最小。该变化由降雨可蚀性因子和植被覆盖度因子综合影响所致。③ 植被覆盖度因子和多年平均降雨量因子是影响区域土壤侵蚀空间分布的重要因素。未利用土地、植被覆盖度小于0.3、坡度在25°以上和降雨量在1543~1593 mm之间的地区为高风险侵蚀区域。④ 植被覆盖度与土壤侵蚀在空间上全部呈负相关性,降雨因子与土壤侵蚀在空间上存在负相关性和正相关性。⑤ 土壤侵蚀改善区域大多分布在生态工程区域内,生态工程建设能够改善土壤侵蚀情况,不同生态工程保护侧重点不同导致土壤侵蚀改善程度不同。退耕还林还草工程对六盘水市土壤侵蚀的改善具有重要意义,六盘水市更宜退耕还林。  相似文献   

14.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

15.
The impact of land-use on surface runoff and soil erosion is still poorly understood at basin scale. Thus in the Western Jilin Ecosystem (WJE), surface runoff and soil erosion were measured against identified land-use types in the basin. Due to the spatial nature of the analysis, GIS ArcMap version 9.1 and the WetSpass model were used in the simulation process. In the study, the WetSpass model was extended with the Dynamic Sediment Balance Equation (Ziegler et al., 1997), to simulate and quantify soil erosion. A hypothetical natural grassland scenario was developed for the study area and compared with the present land-use management conditions. The results indicate significant differences in runoff and soil erosion across the different land-use types both within and between the two scenarios. Calculated averages of surface runoff and soil erosion for the present land-use management were 48.03 mm/a and 83.43 kg/(m2·a) respectively. Those for the hypothetical natural grassland scenario were 24.70 mm/a and 78.36 kg/m2·a) . Thus an overall decrease in runoff and soil erosion was observed as the conditions changed from the present land-use management to the hypothetical natural grassland state. Under the present land-use management, urban settlements exhibited the highest surface runoff but one of the least soil erosions, while bare-lands showed the highest soil erosion. It was more generally observed that runoff and erosion varies with vegetation type/density. It was concluded based on the research findings that the present land-use management might not be the best scenario for the ecosystem as it showed increased basin runoff and soil erosion in comparison with the natural grassland vegetation. Since no best scenario was simulated for or advanced in the study, further research to develop a more balanced land management system is thus required. The findings of the study can assist in the identification of vulnerable/fragile ecosystems in the basin and to guide sustainable future planning and development of the basin.  相似文献   

16.
Quantifying the effects of forests on water and soil conservation helps further understanding of ecological functions and improving vegetation reconstruction in water-eroded areas.Studies on the effects of vegetation on water and soil conservation have generally focused on vegetation types or vegetation horizontal distribution densities.However,only a few studies have used indicators that consider the vegetation vertical distribution.This study used the leaf area index(LAI) to investigate the relationship between forests and water and soil conservation in experimental plots.From 2007 to 2010,rainfall characteristics,LAI,and water and soil loss in 144 natural erosive rainfall events were measured from five pure tree plots(Pinus massoniana).These tree plots were located in Hetian Town,Changting County,Fujian Province,which is a typical water-eroded area in Southern China.Quadratic polynomial regression models for LAI and water/soil conservation effects(RE/SE) were established for each plot.The RE and SE corresponded to the ratios of the runoff depth(RD) and the soil loss(SL) of each pure tree plot to those of the control plot under each rainfall event.The transformation LAIs of the LAI–RE and LAI–SE curves,as well as the rainfall characteristics for the different water/soil conservation effects,were computed.The increasing LAI resulted in descending,descending–ascending,ascending–descending,and ascending trends in the LAI–RE and LAI–SE curves.The rainfall frequencies corresponding to each trend of LAI–RE and LAI–SE were different,and the rainfall distributions were not uniform per year.The effects of soil conservation in the plots were superior to those of water conservation.Most of the RE and SE values presented a positive effect on water and soil conservation.The main factor that caused different effects was rainfall intensity.During heavy rains(e.g.,rainfall erosivity R = 145 MJ mm/ha h and maximum 30 min intensity I30 = 13 mm/h),the main effects were positive,whereas light rains(e.g.,R = 70 MJ mm/ha h and I30 = 8 mm/h) generally led to negative effects.When the rainfall erosivity was lower than that of the positive or the negative effects to a threshold and the tree LAI reached a transformation value,the relationships between LAI and RE or SE notably transformed.Results showed that the plottransformation LAIs for water and soil conservation during rainfall events were both approximately 1.0 in our study.These results could be used to come up with a more efficient way to alleviate water and soil loss in water-eroded areas.  相似文献   

17.
针对川中丘陵区紫色土坡耕地严重水土流失,选取典型代表李子溪流域为研究区,构建了其SWAT的模型数据库,包括地形、土壤、气象和土地利用数据库。并利用赵家祠水文站1970-1979年的实测径流和泥沙资料,对该流域的SWAT模型参数进行率定再采用1980-1986年的实测资料,对模型的适用性进行验证,同时用相对误差Re和Nash确定性系数Ens评价模拟效果。结果显示,径流和泥沙模拟相对误差均在±15%范围以内,Nash确定性系数均大于等于0.70,说明SWAT模型对李子溪流域年、月径流和年泥沙量的模拟精度较高。同时模拟值与实测值和降雨量的变化趋于一致。可见,用SWAT模型模拟和预测雨量较为丰沛、土壤侵蚀较严重的紫色丘陵地区的产流产沙是实用、可行的。  相似文献   

18.
Damage assessment for slopes using geographical information system (GIS) has been actively carried out by researchers working on several government organizations and research institutes in Korea. In this study, 596 slope damages were examined to identify the types of damage associated with dip angles, dip directions, and heavy rainfall resulting from typhoons in South Korea. Heavy rainfall of 100 mm to 300 mm resulted in 80% at the investigated slope damages. A GIS database was developed for highways, rainfall, soil or rock geometry, and types of damage. A grid of rainfall intensity was generated from the records of maximum daily rainfall. Contours for slope damages and heavy rainfall using optimal GIS mesh dimensions were generated to visualize damage patterns and show substantially strong correlation of rainfall with slope damages. The combination of remote sensing with the GIS pattern recognition process described in this work are being expanded for a new generation of emergency response and rapid decision support systems.  相似文献   

19.
Soil conservation practices can greatly affect the soil erosion process, but limited information is available about its influence on the particle size distribution(PSD) of eroded sediment, especially under natural rainfall. In this study, the runoff, sediment yields, and effective/ultimate PSD were measured under two conventional tillage practices, downhill ridge tillage(DT) and plat tillage(PT) and three soil conservation practices, contour ridge tillage(CT), mulching with downhill ridge tillage(MDT), and mulching with contour ridge tillage(MCT) during 21 natural rainfall events in the lower Jinsha River. The results showed that(1) soil conservation practices had a significant effect on soil erosion. The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm) and sediment yield(0.01 to 3.19 t hm-2). Compared with DT, the annual runoff depths and sediment yields of CT, MDT and MCT decreased by 12.24%-49.75% and 40.79%-88.30%, respectively.(2) Soil conservation practices can reduce the decomposition of aggregates in sediments. The ratios of effective and ultimate particle size(E/U) of siltand sand-sized particles of DT and PT plots were close to 1, indicating that they were transported as primary particles, however, values lower/greater than 1 subject to CT, MDT and MCT plots indicated they were transported as aggregates. The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3) The sediments of soil conservation practices were more selective than those of conventional tillage practices. For CT, MDT and MCT plots, the average enrichment ratios(ERs) of clay, silt and sand were 1.99, 1.93 and 0.42, respectively, with enrichment of clay and silt and depletion of sand in sediments. However, the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil. These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment, and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China.  相似文献   

20.
泥质砂岩残积土作为一种结构性很强的特殊土, 具有崩解性强、抗冲蚀性差以及扰动性极大的特点, 对工程建设有较大影响。为了探究泥质砂岩残积土边坡降雨冲刷机理, 设计了边坡降雨冲刷试验, 通过现场三维激光扫描技术测试分析了其表面冲刷效应; 利用高密度电法进一步明确了泥质砂岩残积土边坡的入渗特性、表面冲刷演化机制及冲刷破坏机理。结果表明: 冲刷试验的最初阶段, 降水入渗强且主要向坡脚处运移, 坡表未形成明显的细沟; 冲刷试验中期, 坡脚处土体最先达到饱和而形成坡面径流, 细沟贯通扩大形成小规模冲槽以及片蚀区; 冲刷试验后期, 坡面中部和坡脚处土体冲蚀严重, 坡脚处的冲槽向上部延伸, 片蚀区扩大, 导致表层土体结构发生变化, 渗透性差异明显; 泥质砂岩残积土坡体降雨冲刷主要划分为表层溅蚀、下层潜蚀和细沟贯通3个阶段, 坡面土体流失主要发生在最后一个阶段, 细沟率达到最高值16.9%, 细沟贯通率也高达0.74。研究结果可以为深入探讨泥质砂岩残积土边坡冲蚀防护和研究冲蚀防护机理提供基础资料。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号